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Abstract—For a given positive integer n, we 

determine all linear Chern number inequalities 
satisfied by any complete intersection surface of 
general type of order n. Similar results are 
obtained in the general case. As a corollary, we 
improve the inequalities satisfied by the Chern-
invariants of a surface of general type. 

Keywords—Convex cone; general type; 
complete intersection surfaces. 

I. INTRODUCTION 

This paper is motivated by the results established 
in [1] in the case of smooth complete intersection 

threefolds with ample canonical bundle. Let 
2

1 ,c  be 

the Chern-invariants of a surface of general type, 
Bogomolov Miyauka-Yau inequalities [2] say that 

2 2 2

1 1 1, 0, 2 6, 9 .c c c       

As these inequalities are, one may naturally asks if 
there exist more sharpened inequalities. This is 
possible because ULF Persson [3] listed those 
complete intersections whose Chern-numbers are 
fairly small, gave the geography of them and 
established the following result. 

Theorem 1.1: If X  is a complete intersection 

surface of general type, then 
2

1 ( ) 8 (c X  O )X  

However, this inequality can be slightly sharpened, 
although the coefficient 8 is the best possible. Our plan 
is, first, to determine for each natural number n, the 

convex hull in ℝ2  generated by Chern- invariants 
2

1( , )c  of complete intersection surfaces of general 

type of order n . Secondly, we deduce the whole 

convex hull of all complete intersection surfaces (CIS) 

of general type. A CIS X  in 
2nP is defined by n  

hypersurfaces of degrees 1, , nd d with 2id   for 

each 1 .i n  The Chern-invariants of X  are 

uniquely determined by the tuple 1( , , )nd d  and we 

use the notation 

2

1 1( ; , , ) ( , )nP n d d c   

for Chern-invariants of .X  We know that X is of 

general type if and only if 
1

3.
n

i

n


   

Set 

1

1

( ; , , ) | 2, 3 ,{ }
n

n n i i

i

P P n d d d d n


     

1 2 3

151 131
(6,11), 11, , 14,

24 18
( ) ( )Q Q Q    

and for 4n   

2 3
2 ( 5 8)2 3 1

( 5 9)2 1; .
24

( )
n

n

n

n n n
Q n n

n

   
     

Let nC  be the convex hull of .nP  We obtain the 

following theorem. 

Theorem 1.2: nC is an unbounded domain with 

infinitely many faces defined as follow. 

1. 1C  is given by all the points in 1,P  which form 

its upper bound, and the half-line 1(5)[ )P Q  

defined by 

1 25
,

6 6
y x   

which is the lower bound. 

2. 2C is delimited by segments of lines defined 

by points (2, )P k  with 4,k  (3,3)P  and the 

half-line 2(3,3)[ )P Q  defined by 

48 7 225 0.y x    

3. 3C  is given by points (2,2, )P k  with 3k  , 

which form its upper bound, and the half-line 

3(2,2,3)[ )P Q  its lower bound defined by 

36 5 192 0.y x    
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4. For 4n  , nC  is defined as follows: 

a) The upper bound is given by: 

i. (2,2,2, ), 2P k k   if 4n  , 

ii. (2,2,2,2, ), 2P k k   if 5n  , 

iii. the line defined by 

2 26 ( 9 12)2 0,ny x n n       

if 6.n   

b) The lower bound is the half-line 

(2,2, ,2)[ )nP Q defined by 

224 (3 1) (2 3 9)2 0.nny n x n n       

We have now set the stage. Complete intersection 
surfaces of general type of a fixed degree n , live in a 

very cut out region of the universe. 

With these results at hands, one may naturally ask 

how looks like the shape of the union of all nP . 

Denote P  by: 

1

11

( ; , , ) | 1, 2, 3 .{ }
n

n n i i

in

P P n d d n d d n




      

One way to look at this question is to search a 
deduction from the previous particular cases. If it true 
for its lower bound to be deduced, the deduction of the 
upper bounds requires more effort as shows the proof 
of the following theorem. 

Theorem 1.3：The convex hull of P  is generated 

by the following points 

3 2
3 2

(13,6);

6 11
(1; ) ( 8 16 ; ),

6

Q

d d d
P d d d d

 

 
  

 

where 5.d   

For two distinct points A  and B  in ℝ2, denote the 

line segment connecting A  and B  by ABS , and the 

line passing through A  and B  by ABL . Denote the 

slope of ABL  by ( ).AB  

II. PROOF OF THEOREM 1.2 

Suppose 𝑛 𝜖 ℝ  is a positive integer, and 

𝑑1, … , 𝑑𝑛 𝜖 ℝ We define: 

1 1 2

1 1 2

2 2 2

2 1 2

2 2 2

2 1 2

,

3,

,

3,

n

n

n

n

s d d d

s d d d n

s d d d

s d d d n





   

     

   

     

 

1 2

,

,

,

( ;2, , 2, ).

n

in k

k i n

n

k

p d d d

p d

A P n k









  

(1) Let  𝜖 ℝ  ; 5d  . The slope of 
( ) ( 1)P d P dL 

 is 

given as follows 

2

2

3 9 6
( ) ( 1) .

6(3 13 9)
( ) d d
P d P d

d d


 
 

 
 

Then the family of slopes 5( ) ( 1)( ( ))dP d P d   

is a sequence with positive terms. 

Moreover 

( 1) ( 2) ( ) ( 1)( ) ( )P d P d P d P d      

2

2 2

2 1
0

(3 7 1)(3 13 9)

d d

d d d d

  
 

   
 

and 

lim ( ) ( 1)( )
d

P d P d


  

2

2

3 9 6 1
lim ,

6(3 13 9) 6d

d d

d d

 
 

 
 

then 5( ) ( 1)( ( ))dP d P d  is decreasing and 

tending to
1

6
. This concludes that all the points ( )P d  , 

for 5d  , are above the line of slope 
1

6
 passing 

through (5) (5,5)P  , i.e the line whose equation is 

1 25
.

6 6
y x   

Lemma 2.1 Let 2n   and 𝑑1, 𝑑2 … , 𝑑𝑛 𝜖 ℝ𝑛  

satisfying the following: 1 22 nd d d     and 

1 2 4.nd d d n      

There exist 2k   and a finite number of points 

1 2, , , lR R R  in nP  such that 

2 2 2 2

1 1 1 1 2 1( (2, ,2, )) ( ) ( ) ( ).lc P k c R c R c R     

Moreover 

1 2

1
( , , , )

6
( )l nR P d d d   

and 

http://www.jmest.org/
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1

1
( )

6
i iR R    

for 1,2, , 1 .{ }i l   

Proof. Define {1,2, , 1}| 3 .{ }jA j n d     

Case A   is obvious. 

Suppose A  . Let i minA . We know that If 

X  is a complete intersection surface of general type 
of order n , then we have 

2 2

1 1( )c X ps   

and 

2

2 1( ) 3 .
24

( )p
X s s     

Consider 

1 2 1 1 1( , , , , 1, , , , 1)i i i i n nT P d d d d d d d      Set 

1 1( , )x y  and 2 2( , )x y  the coordinates of 

1 2( , , , )nP d d d  and iT  respectively. We obtain

2

2 1 2 13
24

( )p
y y s s     

2

2 1( 1)( 3 2 2 2)
24

in
i n i n i n

p
d d d d s s d d          

22 ( 1) ( 1)(
24

[in
i n n i n i

p
d d d d d d s       

2

13 2 2 2)]i ns d d     

2

2 1( 1) 3 2 2 2 2 .
24

( )in
n i i n i n

p
d d s s d d d d          

2 2

2 1 1 1( 1)in i n i nx x ps p d d d d s        

2

1 ( 1).in n ip s d d    

We get the following slope 1 2( , , , )( )i nT P d d d  

2

2 1

2

1

3 2 2 2 2
.

24

i n i ns s d d d d

s

 



    
  

Now, let us prove the inequality. We use induction 
to do that. 

1 2

1
( , , , )

6
( )i nT P d d d   iff 

2

2 12 2 2 2 . (1)n i i ns d d s d d       

For 1 1 2id d     , 1 3,i i nd d d     (1) 

is equivalent to 

2 2( 4 9) 4 16 18 0.i n i n n        

The latter inequality is true because the 

discriminant of its left hand side polynomial in i  is

8 9 0n    . 

Now, suppose (1) is true for 1 22 nd d d     

such that 1 1 2id d     and that the following 

holds 13 i i nd d d    . 

Let 

1{ , 1, , }| 3{ i l ll min l i i n d d d 
      

11 .}l nd d     Let us prove that (1) is also 

verified for the following series of inequalities 

1 2 1 12 1 .l l l nd d d d d d           

If l i  then we have 

(1) true  

2

2 1 11 2 2 1 2 2n i n ns d s s d d d           

11 ;because l n i nd s d d d      

11 s    

The last inequality is true by definition of 1s  . 

If l n  then the inequality (1) is true 

2

2 1 14 2 5 2 1 2 2n i i n is d d s s d d d            

11n id s d     

11 n is d d     

The last inequality is true because 

1 2( 2) 6 2 2.n is d d n n        If i l n   then 

3n   and we have 

(1) 
2

2 1 12 1 2 2 2 2 1l n is d d d s s            

2 i nd d  

1 1 1 3ld d s d n       

3k

k l

d n


    

The last inequality is true because 

2( 1) 2 2 .k

k l

d n n


     

To prove
2 2 2

1 1 1 2 1( ) ( ) ( )lc P c P c P   , note that 

1 2 1 1 1 1( , , , , 1, , , , 1) ( ,( i i i n nP d d d d d d d P d      

2 , , ) 0)nd d   
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Lemma 2.2 Consider an integer  𝜖 ℝ , 2n   and 

( , , , )P d d d  be a point in nP . Then the sequence of 

slopes 

( ( , , , ) ( 1, 1, , 1)( )dP d d d P d d d     

converges to the number 

3 1
.

24

n

n


 

Proof. From the fact that if X  is a complete 
intersection surface of general type of order n  , then

2 2

1 1( )c X ps   and 
2

2 1( ) 3
24

( )p
X s s    , we get 

2 2( , , , ) ( 3) ; 3
24

( (
n

n d
P d d d d nd n nd n      

23( 3) .))nd n    And clearly 

lim ( ( , , , ) ( 1, 1, , 1)( )d
d

P d d d P d d d


    

3 1

24

n

n


  

(2) It is easy to see that all points in 2Q  are above 

the segment line (2,4) (3,3)[ ]P P . Let 1 2( , )P d d a 

point in 2Q . Then 

2 2 21 2
1 2 1 2 1 2 1 2( , ) ( 5) ;

24
( (d d

P d d d d d d d d     

2

1 25 3( 5) .))d d     Now 1 2( , )P d d  is above 

2(3,3)[ )P P  if and only if 

2

1 2 1 2 1 2( ) 10( ) 35 225.( )d d d d d d      

The left hand side of the latter inequality attains its 

minimum for 1 2( , ) (2,4)d d   and the minimum is 

225. By Lemma 2.2 we conclude that 2(3,3)[ )P P  is 

the lower bound. For the upper bounds, from 
computations we have 

2

2

2 1
(2, ) (2, 1)

2(3 9 4)
( ) k k
P k P k

k k


 
 

 
 

and 

(2, 1) (2, 2) (2, ) (2, 1)( ) ( )P k P k P k P k    

 

2

2 2

3 2
.

2(3 9 4)(3 3 2)

k k

k k k k

  


   
 The sequence 

4(2, ) (2, 1)( ( ))kP k P k   is then decreasing. It is 

easy to see that 

1
lim (2, ) (2, 1) .

6
( )

k
P k P k


   

Lemma 2.1 concludes that points (2, )P k  form the 

upper bound of the convex hull 2C . 

( )3  Let 1 2 3( , , )P d d d  be a point in 3Q  . Then 

2

1 2 3 1 2 3 1 2 3( , , ) ( 6) ;(P d d d d d d d d d     

2 2 2 21 2 3
1 2 3 1 2 36 3( 6) .

24
( ))d d d
d d d d d d      

 The point 1 2 3( , , )P d d d  is above 
3

3 3[ )A P  if and only 

if 

2 2 2 2

1 2 3 1 2 3 1 2 3

3 1
( ) 9 ( 6)

2 2
( )d d d d d d d d d      

 192  (2) 

The inequality (2)  is true for 1 2 3( , , ) (2,2,3)d d d 

. If 1 2 32 d d d    and 1 2 3 8d d d    then 

(2) is true 

2 2 2 2

1 2 3 1 2 3

3 1
( ) 9 ( 6) 16

2 2
d d d d d d          

2 2 2 2

1 2 3 1 2 3 1 2 33( ) 12( ) ( )d d d d d d d d d          86  

The latter inequality is true because
2 2 2 2

1 2 3 1 2 33( ) ( )d d d d d d      and also

1 2 312( ) 12 8 96d d d     . By Lemma 2.2 we 

conclude that 
3

3 3[ )A P  is the lower bound. For the 

upper bound, we have 

2
3 3

1 2

2 2 1
.

4(3 5 1)
( )k k

k k
A A

k k
 

 


 
 

Moreover 

3 3 3 3

1 2 1) )( ) ( )k k k kA A A A     

2

2 2

4 6 2
.

4(3 5 1)(3 1)

k k

k k k k

  


     

Then the sequence 
3 3

1 3( ( ))k k kA A    is 

decreasing. We have 

http://www.jmest.org/
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3 3

1

1
lim .

6
( )k k

k
A A 


  

By lemma 2.1 we conclude that points (2,2, )P k  

give the upper bound. 

 (4) (a) 

We have 

3 2 2 12( 5) ( 10 25) 2 ;(( )n n

kA k n k n n k        

4
3 2 22

4 6( 5) (3 27 68) .
3

( ))
n k

k n k n n k


      

Computations give 

2 2

1 2 2

12 12( 4) 3( 7 14)
.

24(3 (4 17) 8 16)
( )n n

k k

k n k n n
A A

k n k n n
 

    


    

 

(i) If 4n   then 

2
4 4

1 2

2 1
.

4(3 )
( )k k

k
A A

k k
 





 

 We get 

2
4 4 4 4

1 2 1 2 2

2 8 2
.

4(3 5 2)(3 )
( ) ( )k k k k

k k
A A A A

k k k k
   

  
 

  

 

 Then 
4 4

1( ( ))k k kA A   is decreasing and tending to

1

6
 . Lemma 2.1 concludes. 

(ii) If 5n   then 

2
5 5

1 2

1
.

2(3 3 1)
( )k k

k k
A A

k k
 

 


 
 

 We get 
5 5 5 5

1 2 1( ) ( )k k k kA A A A     

2 2

4( 1)
.

2(3 9 7)(3 3 1)

k

k k k k

 


   
 Then 

5 5

1( ( ))k k kA A 
 is decreasing and tending to

1

6
. By 

Lemma 2.1, we get the result. 

(iii) For 6n  , we prove that 1

1
.

6
( )n n

k kA A    In 

fact 

 1

1

6
( )n n

k kA A    

2 2

2 2

12 12( 4) 3( 7 14) 1

24(3 (4 17) 8 16) 6

k n k n n

k n k n n

    
 

    
 

24( 5) 11 22 0.n k n n       

We check that the latter inequality is true. 
Moreover, we have the following limit 

1

1
lim ( ) .

6

n n

k k
k

A A 


  

 Lemma 2.1 permits to say that all points in nQ  are 

below the line passing through
2

nA  whose slope is 
1

6
 

i.e the line whose equation is 

2 26 ( 9 12)2 0.ny x n n       

( )b  Let 1 2( , , , )nP d d d  a point in .nQ  

 1 2 2( , , , ) is above the half line [ )n

n nP d d d A P  

2 2 2

2 1 13 (3 1) (2 3 9)2 0( ) nnp s s n s p n n         

 
2 2

2 1 (2 3 9)2( ) np ns s n n       

2 2

2 1 1( 3) 2( 3) 3 9ns n n s n s n n         

2

12( 3) 4 12n s n n     

1 2s n   

The latter inequality is true. By Lemma 2.2 we 

conclude that 2[ )n

nA P  is the lower bound. 

3 Proof of Theorem 1.3 

From Theorem 1.2, we see that for a fixed integer

n , the lower bound of nC  is a line with slope  

3 1
.

24

n

n


 

 Besides, all points in P  have their x  coordinate 

and y  coordinate greater than those of  5P

 5,5 .  As 

3 1 1
lim ,

24 8n

n

n


  

 the lower bound of P  is given by the line of slope

1

8
, passing through (5)P  . That concludes that 

(5)P QL


 defines the lower bound. Let us prove now the 

upper bound. 

Lemma 3.1. Let  𝜖 ℝ 2n  , 𝑏1, 𝑏2 … , 𝑏𝑛 𝜖 ℝ  such 

that for all {1,2, , }A n  with 

| | 1, 3i

i A

A n b n


    . If 

http://www.jmest.org/
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2 2 2 2

1 2 1 23 ( 3)n nb b b n b b b n            

 then 

2 2 2 2

1 2 1 23 ( 3)n nd d d n d d d n            

for all {1,2, , }i n  and 𝑛 𝜖 ℝ  such that .i id b  

Proof. Let 𝑑1, 𝑑2 … , 𝑑𝑛 𝜖 ℝ such that i id b  for all 

{1,2, , }i n  and set .i i ik d b   We have 

2 2 2 2 2 2

1 2 1 1( ) 3i i i i nb b b b k b b n            

2 2 2 2

1 2 3 2n i i ib b b n k b k         

2 2

1 2( 3) 2n i i ib b b n k b k         

2

1 2 1 2( 3) 2 (n ib b b n k b b          

23)n ib n k   
2

1 2 1 1( 3) .i i i nb b b d b b n            

 Applying the same reasoning consecutively n  

times with distinct i we obtain 

2 2 2 2

1 2 1 23 ( 3) .n nd d d n d d d n            

We will now prove that for all 𝑛 𝜖 ℝ  ; 2n   , 

𝑑 𝜖 ℝ; 𝑑 ≥ 5 , for all 𝑑1, 𝑑2 … , 𝑑𝑛 𝜖 ℝ  such that 

1 2 32 nd d d d      and 
1

3,
n

i

i

d n


   

1 2( ; , , , )nP n d d d P  is below 
1
.

d dQ QL


 

A point 1( ; , , )nP n d d  is below the line 
1d dQ QL


 if 

and only if 

   2 2 2

2 13 13 9 3 1
24

p
d d s d d s 

      
 

 

 4 3 22 6 13 75 54 0.d d d d      

We will use Lemma 3.1 to prove the cases 6n   

and Lemma 2.1 to check the case 2,3,4,5.n   Now, 

let us set 1( ; , , )n nf d d d  to be the following function 

   2 2 2

2 13 13 9 3 1
24

p
d d s d d s 

     
 

 

 4 3 22 6 13 75 54 .d d d d      

We need to prove that 1( ; , , )n nf d d d  is negative. 

Case 8n  : We first notice that for 5d  , we have 

2 20 3 13 9 3( 1)d d d d       

 and 

4 3 22 6 13 75 54 0.d d d d      

 Moreover 

2 2 2 2

n times n times

2 2 2 3 (2 2 2 3) .n n            

 The conditions of Lemma 3.1 are satisfied for 

1 2 2.nb b b     Thus
2

2 1s s   . Then 

1 2( ; , , , ) 0.n nf d d d d   

Case :n 7  We get the following inequality 

2 2 2 2 2 2 22 2 2 2 2 2 3 7 3 23 25          

 
2(2 2 2 2 2 2 3 7 3)         

and the conditions of Lemma 3.1 are satisfied for 

1 2 3 4 5 6 72, 3.b b b b b b b        

 Then 

 
2 2 2 2 2 2 2

1 2 3 4 5 6 7 7 3d d d d d d d         

2

1 2 3 4 5 6 7( 7 3)d d d d d d d          for all 

1 2 6 7, , , 2, 3.d d d d   It is easy to check that 

4 3 2

7 ( ;2,...,2) 2 6 179 8949 6666f d d d d d     

 0.  

Case :n 6  We have 

2 2 2 2 2 22 2 2 2 3 3 6 3 (2 2 2 2            

23 3 6 3)     

2 2 2 2 2 22 2 2 2 3 4 6 3 (2 2 2 2            

23 4 6 3)     

2 2 2 2 2 22 2 2 2 2 5 6 3 (2 2 2 2            

22 5 6 3)     

By Lemma 3.1, we come to the conclusion that 
2 2 2 2 2 2

1 2 3 4 5 6 1 2 3 46 3 (d d d d d d d d d d          

 
2

5 6 6 3)d d     

 holds for all 1 2 3 4 5 6( , , , , , )d d d d d d  such that 

1 2 3 4 5, , , 2 and 3d d d d d   

6 5 6and 3 or 2 and 5.d d d    It is 

easy to verify that 6 1 2 3 4 5 6( ; , , , , , ) 0f d d d d d d d   

when 

1 2 3 4 5 6( , , , , , ) (2,2,2,2,2,2),(2,2,2,2,2,3),{d d d d d d 

 (2,2,2,2,2,4) .}  

Case 5:n   By theorem 1.2 (2) , we only need to 

check 5 1 2 3 4 5( ; , , , , ) 0f d d d d d d   for 

http://www.jmest.org/
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   _1,  _ 2,  _ 3,  _ 4,  _ 5    2,  2,  2,  2,  d d d d d k

 with 2k   and 5.d   It is easy to see that 
4 3 2

5( ;2,2,2,2, ) 2 6 (96 13)f d k d d k d      

3 3( 64 416 75) 48 288 54 0.k k d k k         

Founding the same argumentation and seeing that 
4 3 2 2

4( ;2,2,2, ) 2 6 (12 24 13)f d k d d k k d     

3 2 3 2( 32 12 136 75) 24 12 96k k k d k k k         

54 0,   

4 3 2 2

3( ;2,2, ) 2 6 (12 6 13)f d k d d k k d       

3 2 3 2( 16 12 38 75) 12 12 30k k k d k k k         

54 0   

And 

4 3 2 2

2( ;2, ) 2 6 (9 15 13)f d k d d k k d       

3 2 3 2( 8 9 7 75) 6 9 9 54 0,k k k d k k k           

we also conclude for the cases 4n  , 3n   and 

2.n   

Corollary 3.1 If X  is a complete intersection 

surface of general type, then  

2

1 ( ) 5, ( ) 5,c X X   

2 2

1 1

19 65
( ) 8 ( ) 35, ( ) ( ).

6 6
c X X X c X      

ACKNOWLEDGMENT 

The authors would like to thank Prof. Qu Zhenhua 
for suggesting the problem and helping in many ways 
while solving the problem. 

REFERENCES 

[1] Mao Sheng, J.-X. Xu and M.-W. Zhang. On 
the Chern number inequalities satisfied by all 
smooth complete intersection threefolds with 
ample canonical class, International Journal of 
Mathematics. Vol. 25, No. 4 (2014) 1450029. 

[2] F. Bogomolov, Holomorphic tensors and 
vector bundles on projective varieties, Math, 
URSSR-Izv. 13 (1978), 499-555. 

[3] Ulf Persson, An Introduction to the Geography 
of Surfaces of General Type. Proceedings of 
Symposia in Pure Mathematics, Volume 46 
(1987). 

 

http://www.jmest.org/

