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Abstract—Quantile regression is a statistical 
technique intended to estimate, and conduct 
inference about the conditional quantile functions. 
Just as the classical linear regression methods 
estimate models for conditional mean function, 
quantile regression offers a mechanism for 
estimating models for conditional median 
function, and the full range of other conditional 
quantile functions. In this paper describe, 
compare, and apply the two quantile regression 
(𝑳𝟏-Lasso, 𝑳𝟐-Lasso) suggested approaches. The 
two quantile regression suggested approaches 
used to select the best subset of variables and 
estimate the parameters of the quantile regression 
equation when small sample sizes are used. The 
aim of this study is to study the behavior of 𝑳𝟏-

Lasso and 𝑳𝟐 -Lasso quantile regression method 
when small sample sizes are generated. 
Simulations show that the proposed approaches 
are very competitive in terms of variable selection, 
estimation accuracy and efficient when small 
sample sizes are used. All results showed 
superiority of 𝑳𝟏 -Lasso compared with 𝑳𝟐 -Lasso 
linear programming methods. 

Keywords—Quantile Regression – Small 
Sample size – Selection of Variables - estimated 
risk – relative estimated risk. 

 

1-INTRODUCTION 

Quantile regression (1) has gained increasing 
popularity as it provides richer information than the 
classic mean regression. Quantile regression is a 
statistical technique intended to estimate, and conduct 
inference about the conditional quantile functions. Just 
as the classical linear regression methods estimate 
models for conditional mean function, quantile 
regression offers a mechanism for estimating models 
for conditional median function, and the full range of 
other conditional quantile functions. An efficient 
algorithm proposed to compute the entire solution 
path of the lasso regularized quantile regression (2). 
(3) Focus on the variable selection aspect of 
penalized quantile regression. Under some mild 
conditions, the study demonstrates the oracle 
properties of the SCAD and adaptive-lasso penalized. 
(4) Consider quantile regression in high-dimensional 
sparse models. In such models, the overall number of 

regressors is very large, possibly much larger than the 

sample size. (5) Proposed the composite quantile 
regression estimator by averaging quantile 

regressions. The study showed that the composite 
quantile regression is selection consistent and can be 
more robust in various circumstances. 

(6) Extended this work to analyzing a Tobit quantile 
regression model, a form of censored model in which 
yi = yi*is observed if yi*> 0 and yi = 0 is observed 
otherwise. A regression model then relates the 
unobserved yi to the covariants xi. (7)) used the AL 
likelihood and combine Markov Chain Monte Carlo 
(MCMC) with the expectation maximizing algorithm 
(EM) to carry out inference on quantile regression for 
longitudinal data. (8) used the AL likelihood combined 
with non-parametric regression modeling using 
piecewise polynomials to implement automatic curve 
fitting for quantile regression and (9) used the same 
approach but using natural cubic splines. (10) pointed 
out that the value of not only controls the quantile but 
also the skewness of the AL distribution resulting in 
limited explicitly. The residual distribution is symmetric 
when modeling the median. This motivated (11) and 
(10) considered a more exible residual distribution 
constructed using a Dirichlet process prior but still 
having the quantile equal to zero. The study of (10) 
included a general scale mixture of AL densities with 
skewness 𝜏  in their analysis, but conclude that in 
terms of ability to predict new observations, a general 
mixture of uniform distributions performs the best. 

The study investigates the methodology and theory 
of non-convex, penalized quantile regression in ultra-
high dimension. The proposed approach has two 
distinctive features: first it explore the entire 
conditional distribution of the response variable, given 
the ultra-high-dimensional covariates, and provides a 
more realistic picture of the scarcity pattern; two it 
requires substantially weaker conditions compared 
with alternative methods in the literature; thus, it 
greatly alleviates the difficulty of model checking in the 
ultra-high dimension. In theoretic development, it is 
challenging to deal with both the non smooth loss 
function and the non convex penalty function in ultra-
high-dimensional parameter space. The study 
introduces a novel, sufficient optimality condition that 
relies on a convex differencing representation of the 
penalized loss function and the sub differential 
calculus (12). 

A new non-parametric regression technique called 
local composite quantile regression smoothing to 
improve local polynomial regression further are 
proposed. Sampling properties of the estimation 
procedure proposed are studied. The study derives 
the asymptotic bias, variance and normality of the 
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estimate proposed. The asymptotic relative efficiency 
of the estimate with respect to local polynomial 
regression is investigated. It is shown that the 
estimate can be much more efficient than the local 
polynomial regression estimate for various non-normal 
errors, while being almost as efficient as the local 
polynomial regression estimate for normal errors. 
Simulation is conducted to examine the performance 
of the estimates proposed. The simulation results are 
consistent with our theoretical findings. A real data 
example is used to illustrate the method proposed 
(13). 

A new algorithm to directly solve the doubly 
regularized support vector machine without resorting 
to approximation as in hybrid huberized support vector 
machine is introduced. The suggested method is 
based on the alternating direction method of 
multipliers the alternating direction method of 
multipliers. The study demonstrate that the method is 
efficient even for large-scale problems with tens of 
thousands variables (14). A tuning parameter 
selection criterion based on variable selection stability 
is proposed. The key idea is that if multiple samples 
are available from the same distribution, a good 
variable selection method should yield similar sets of 
informative variables that do not vary much from one 
sample to another. The effectiveness of the proposed 
selection criterion is demonstrated in a variety of 
simulated examples and a real application. More 
importantly, its asymptotic selection consistency is 
established, showing that the variable selection 
method with the selected tuning parameter would 
recover the truly informative variable set with 
probability tending to one. The aim of this study is to 
study the behavior of 𝐿1-Lasso and 𝐿2-Lasso quantile 
regression method when small sample sizes are 
generated. 

The organization of the study is as follows: In 
Section 2 the study described lasso and quantile 
Lasso methods which used in this study. Section 3 
described the step which applied in this simulation 
study. Results and discussion are given in Section 4. 
Finally, concluding remarks are provided in Section 5. 

2- LEAST ABSOLUTE SHRINKAGE AND 
SELECTION OPERATOR (Lasso) 

The Lasso is a regression method proposed by R. 
Tibshirani in 1996. Similar to Ordinary Least Squares 
(OLS) regression, Lasso minimizes the Residual Sum 
of Squares (RSS) but poses a constraint to the sum of 
the absolute values of the coefficients being less than 
a constant. This additional constraint is moreover 
similar to that introduced in Ridge regression, where 
the constraint is to the sum of the squared values of 
the coefficients. This simple modification allows Lasso 
to perform also variable selection because the 
shrinkage of the coefficients is such that some 
coefficients can be shrunk exactly to zero. 

The linkage between OLS, Lasso and Ridge is: 

OLS = min⁡(∑ (𝑦𝑖−⁡
𝑛
𝑖=1  β0 – ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1 )2 (1) 

LASSO = min⁡(∑ (𝑦𝑖−⁡
𝑛
𝑖=1  β0 – ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1 )2 +

⁡𝜆 ∑ |𝛽𝑗|)
𝑝
𝑗=1

 
(2) 

Ridge = min⁡(∑ (𝑦𝑖−⁡
𝑛
𝑖=1  β0 – ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝
𝑗=1 )2 +

⁡𝜆 ∑ 𝛽𝑗
2)

𝑝
𝑗=1  (3) 

where n is the number of objects, p the number of 
variables and 𝜆 a parameter. 

It can be said that Lasso is an improvement over 
Ridge, in that Lasso has the beneficial aspects of 
Ridge, i.e. higher bias and lower variance (compared 
to OLS), but also allows to select variables, leading to 
an enhanced interpretability of the developed models. 
The λ parameter can be tuned in order to set the 
shrinkage level, the higher the λ is, and the more 
coefficients are shrunk to zero (16)(17). 

The paper proposed and compares the ideas from 
Lasso by using the L1 penalty and L2 penalty. The 
study applied the two cases when the least squares 
loss replaced by the L1 loss in quantile regression 
model. Applied L1 penalty gain the following two 
advantages. First, it allows the researcher to 
penetrate the difficult problem of variable selection for 
the L1 regression. Appealingly, the shrinkage property 
of the Lasso estimator continues to hold in L1 
regression. Second, the single criterion function with 
both components being of L1-type reduces 
(numerically) the minimization to a strictly linear 
programming problem, making any resulting 
methodology extremely easy to implement. To be 
specific, our proposed estimator is a minimize of the 
following criterion function 

∑ 𝜌|𝑌𝑖 − 𝛽′𝑥𝑖|
𝑛
𝑖=1 + 𝜆∑ ∥ 𝛽𝑗 ∥1

𝑛
𝑗=1   (4) 

and 

∑ 𝜌|𝑌𝑖 − 𝛽′𝑥𝑖|
𝑛
𝑖=1 + 𝜆∑ ∥ 𝛽𝑗 ∥2

𝑛
𝑗=1   (5) 

It can be equivalently defined as a minimize of the 
objective function 

∑ 𝜌|𝑌𝑖 − 𝛽′𝑥𝑖|
𝑛
𝑖=1   (6) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜 ∑ ∥ 𝛽𝑗 ∥1
𝑛
𝑗=1 ≤ 𝜆⁡ (7) 

and 

∑ 𝜌|𝑌𝑖 − 𝛽′𝑥𝑖|
𝑛
𝑖=1   (8) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜 ∑ ∥ 𝛽𝑗 ∥2
𝑛
𝑗=1 ≤ 𝜆  (9) 

where ∥ 𝛽𝑗 ∥1  is the usual L1 estimator and ∥

𝛽𝑗 ∥2⁡is the usual L2 estimator. The tuning parameter 𝜆 

there plays a crucial role of striking a balance between 
estimation of β j and variable selection. Large values 
of β tend to remove variables and increase bias in the 
estimation aspect while small values tend to retain 
variables. Thus it would be ideal that a large β be 
used if a regression parameter is zero (to be 
removed) and small values be used if it not zero. To 
this end, it becomes clear that the researcher need a 
separate β for each parameter component β j. Where 
p is the quantile values. The quantile notion 
generalizes specific terms like quartile, quintile, decile, 
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and percentile. The p
th
 quantile denotes that value of 

the response below which the proportion of the 
population is p. Conditional-median regression is a 
special case of quantile regression in which the 
conditional 0.5

th 
quantile is modeled as a function of 

covariants. More generally, other quantiles can be 
used to describe noncentral positions of a distribution. 

The 𝐿1  penalty and 𝐿2  penalty was used in the 
Lasso for variable selection. The least square (𝐿2) and 

least absolute deviation (𝐿1) regression are a useful 
method for robust regression, and the least absolute 
shrinkage and selection operator Lasso is a popular 
choice for shrinkage estimation and variable selection. 

3-SIMULATION STUDY 

This section discusses the numerical simulation of 
the two models under consideration, 𝐿1-Lasso and 𝐿2-
Lasso for estimation and selection of variables of the 
quantile regression model if the error distribution has 
heavy tailed, skewed normal distribution, and long 
tails. The simulation study discusses steps which 
applied to evaluate the performance of the two 

approaches 𝐿1 -Lasso and 𝐿2 -Lasso, for selection of 
variables and estimation of parameters are as 
following: 

-Quantile regression model was used as 𝑦 = 𝑥𝑖
′𝛽 +

𝜀𝑖 or (y = 0.85x1 + 0.85x2 +0.85x3 +0.85x4 +0.85x5 
+0.85x6 +0.85x7 +0.85x8), where the true value for the 

𝛽,𝑠  are set as 
(0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85) ′ . The 
previous values are dense scenario which chosen 
arbitrary from many studies like (2), (18), (19). The 

study generated 𝑥𝑖⁡
, 𝑠  from normal distribution (0, 1) 

during the simulation study. 

-The simulation study applied ⁡𝑝⁡ ∈ ⁡ (0.1; ⁡0.90) , 
depend on that the quantile nation generalizes 
specific terms like quartile, quintile, decile and 
percentile. Where p is quantile values which are 
arbitrary chosen from the previous specific terms. 

-The study calculated the quantile regression 

models with intercept⁡𝛽° that for the intercept important 
in economic application. -The study when applied the 

( 𝐿1 -Lasso, 𝐿2 -Lasso) linear programming methods 
used a regularization or penalty parameter (¸ 𝜆= 2) as 
a constant referred to (20). 

-The study generated 𝜀𝑖 from different distributions 
which generated outliers with different parameter, so 
as to explain the influence of the change in the error 
distributions on the quantile regression equation, 
which is the basis for choosing through the 𝐿1-Lasso 

and 𝐿2-Lasso approaches. 

-The Lognormal, Cauchy and skewed normal were 
employed to generate a long tailed distribution to 
estimate the parameters of the quantile regression 
model. 

-Small random samples of size n=10, 15 and20 are 
generated using the GAMS 2.25. The study interested 
in the small sample sizes to evaluate the performance 

of the two approaches 𝐿1 -Lasso and 𝐿2 -Lasso, for 
selection of variables and estimation of parameters for 
quantile regression model. 

-This study introduced a program by using GAMS 

2.25 statistical package to calculate the 𝐿1-Lasso and 
𝐿2-Lasso, estimators. 

-For each error distribution with two different shape 
parameters and for each sample size, the estimates of 

𝛽𝑗 where j = 1,…………….…, 8 where calculated for 

𝐿1-Lasso and 𝐿2-Lasso. 

-Two suggested 𝐿1 -Lasso and 𝐿2 -Lasso method 
used to estimate quantile regression model with error 
distribution and follow each of the following four 
distributions and their parameters respectively, 

Lognormal ~ log (0, 0.3) and (0, 2.5); 

Cauchy ~ C (0, 0.5) and (0, 0.9); 

Skewed Normal ~ N (0, 12) and (0, 20). 

-These distributions have been generated using 
the above parameters that were chosen arbitrarily and 
taken from many previous studies to study the 
behavior and the performance for the methods under 
considerations when small sample sizes are applied. 

-In this study the estimated risk and relative 
estimated risk are used as criteria to compare 

between the solutions of 𝐿1-Lasso and 𝐿2-Lasso. 

-The estimated risk of the estimators �̂�𝑗where j = 

1,…, 8 are used to measure its performance, where 

the ER's of the estimators �̂�𝑗 for the parameters 𝛽𝑗 the 

true value which suggested is defined by 

𝐸𝑅(⁡�̂�) = ⁡𝑀𝑆𝐸⁡ = ∑
(�̂�−𝛽)

2

𝑅
𝑅
𝑟=1 ⁡ (10) 

Where R is the number of repeated samples and⁡�̂� 
are the estimates calculated from the sample for 𝛽 
(true value) for each parameter (21). 

-The study applied sampling runs (number of 
repeated) 500 replications for each distribution with 
the two different parameters and two different sample 
sizes to be sure of consistency of the results. 

-For all sample sizes, for all approaches, and for all 
distribution parameters for the four distributions, the 
ER's for each parameter 𝛽𝑗  were calculated using 

each method separately. 

-The criteria to evaluate the performance for the 
two methods under considerations depend on the 
approach, which will produce a small ER for all 
parameters then it, would be considered more suitable 
when the objective is to select the variables and 
estimate the parameters. 

4-RESULTS 

This section concerned with the results related with 
simulation study for two methods under consideration; 

the two methods of linear programming (𝐿1 Lasso and 
𝐿2-Lasso). The study concerned with the behavior and 
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the performance for the 𝐿1  Lasso and 𝐿2 -Lasso 
methods when small sample sizes are applied. 

𝐿1 Lasso and 𝐿2-Lasso methods used to select the 
best subset of variables and estimate the parameters 
of the quantile regression equation when three error 
distributions, with three different small sample sizes 
and two different parameters for each error 
distribution. 

First: The two methods for variable selection in 
quantile regression. 

The first aim of this section is to discuss the result 

of the comparison between 𝐿1 -Lasso and 𝐿2 -Lasso 
estimators when it used to select best subset of 
variables of the quantile regression models with small 
sample sizes. The two methods under consideration 
are used in selection of best subset of variables in 
quantile regression models. When the two methods 
are applied to select variables considering the true 
parameters β = (0.85, 0.85, 0.85, 0.85, 0.85, 0.85, 
0.85, 0.85) and fixed value of quantile p = (0.10, 0.90) 
and three different error distributions are considered 
(Cauchy, skewed normal and log normal) with two 
different parameters for each distribution. 

The results for the first aim demonstrated that: 

-two methods under consideration are tends to 
produce the same coefficient that are (x1 , x2 , x3 , x4 , 
x5, x6 , x7 , x8) zero and not exactly not zero 
coefficients . Table (1) shows the results on how 

frequently each variable was selected by 𝐿1 -Lasso 
and⁡𝐿2-Lasso when ε ~ Lognormal distribution with (0, 
2.5) parameter. Two suggested methods 
approximately deleting the same variables and 
selected the same values. 

Table (1) Number of times each predictor variable 

was selected (out of 100 repetitions) by the 𝐿1-Lasso 
and⁡𝐿2-Lasso when ε ~ Lognormal distribution with (0, 
2.5) parameter. 

 X1 X2 X3 X4 X5 X6 X7 X8 

𝐿1-
Lasso 

83 68 53 50 53 67 58 68 

L2-
Lasso 

55 75 58 50 53 62 65 50 

- The estimators are calculated for each variable 

which selected and estimated risk for 𝐿1 -Lasso 
and⁡𝐿2-Lasso programming estimators are calculated 
for the selection variables. Tables (2) to (7) collect the 
results of ER and named the variable which the two 
methods selected. 

Second: The two methods for estimating the 
parameters 

The second aim of this section is to discuss the 
results of the comparison between 𝐿1-Lasso and 𝐿2-
Lasso estimators when the two methods under 
consideration are used to estimate the parameters for 
quantile regression models. Estimator which produced 

by 𝐿1-Lasso and 𝐿2-Lasso used to calculate the ER. 
The results for the second aim as follows: 

-Estimated risk which produced by 𝐿1-Lasso is less 

than ER which calculated by, 𝐿2- Lasso. 

Third: The two methods with the quantile 
regression values 

The third aim of this section is to discuss the result 

of the comparison between ⁡𝐿1 -Lasso and 𝐿2 -Lasso 
estimators when different value of quantiles are used 
to estimate the parameters and selection of variables 
of the quantile regression models. When the values of 
quantile are p = (0.1, 0.90). When three different error 
distributions are used, with three small sample sizes 
and each distribution have two different parameters. 
Table (2) to (7) appears the quantile regression values 
which used in this study. One, major advantage of 
quantile regression over classical mean regression is 
its exibility in assessing the effect of predictors on 
different locations of the response distribution. 

Regression at multiple quantiles provides more 
comprehensive statistical views than analysis is at 
mean or at single quantile level. When the distribution 
is highly skewed, the mean can be challenging to 
interpret while the median remains highly informative. 

The study showed ER with values of quantile 
regression (0.1) is less than ER with values (0.90) as 
shown in all tables. More generally, values of quantile 
regression (0.1 and 0.90) can be used to describe 
non-central positions of a distribution. 

Fourth: The two methods with small different 
sample sizes 

The fourth aim of this section is to discuss the 
results of suggested two methods when small different 
sample sizes are applied. The simulation study 
applied ⁡𝐿1 -Lasso and ⁡𝐿2 -Lasso when three small 
different sample sizes are generated when three 
different error distributions are used with two different 
parameters for quantile regression models. The 
simulation study generated three small sample sizes 
(n=10, n=15 and n=20) to explain if the small size of 
sample effect or not about the estimators and the 
behavior of the two methods with different samples 
sizes. 

The results for the fourth aim shown that the 
estimators values which used to calculate ER are 
improving with the increase in sample size when the 
(εi) generated fat-long tailed distribution. The results of 
⁡𝐿1-Lasso better than ⁡𝐿2- Lasso when the three small 
different sample sizes are generated. 

Fifth: Two methods with different distribution 

The fifth aim of this section is to discuss the results 

of the comparison between ⁡𝐿1 -Lasso and ⁡𝐿2 -Lasso 
when different distribution with different parameters is 
used. The study considered with three distributions 
(fat-long tailed, skewed normal and chi- square 
distribution) for each distribution two different 
parameters. The simulation study applied with three 
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different distributions and two different parameters for 
each to evaluate the performance for the two methods 
with existence of fat or long tailed distribution. If the 
estimate model effected by the existence of fat-long 
tailed distribution. The results for this aim are: 

Cauchy distribution: From the results in Table (4) 
and (5) with three different sample sizes and two 
different parameters (0, 0.5), (0, 0.9) for Cauchy 
distribution. This study observed that the results of ER 

for ⁡𝐿1-Lasso, is less than ⁡𝐿2-Lasso. The variability for 
the estimation parameter which calculated by ⁡𝐿2 -

Lasso are greater than which calculated by ⁡𝐿1-Lasso 
when Cauchy distribution and three sample sizes. 

Skewed normal distribution: Tables (6) and (7) 
showed the results when three different sample sizes, 
with two different parameter for skewed normal 
distribution, the results demonstrated that the ER for 
⁡𝐿1 -Lasso is less than ER ⁡𝐿2 -Lasso. ⁡𝐿1 -Lasso for 
estimation of parameters when skewed normal 
distribution is used much better than linear 
programming. 

Log normal distribution: Tables (2) and (3) 
showed the results when three sample sizes with two 
different parameters (0, 0.3) and (0, 2.5) for Log 
normal distribution. The results demonstrated that 
ER⁡𝐿1 -Lasso, is better than ⁡𝐿2 −Lasso for estimation 
of parameters when log normal distribution is used. 

In this study, the two methods for estimating 
quantile regression parameter through Lasso linear 
programming are proposed. A simulation study has 
been made to evaluate the performance of the 
proposed estimators and the behavior of the methods 
with small sample sizes based on the estimated risk 
(ER) criterion. Quantile regression is an approach that 
allows us to examine the behavior of the response 
variable beyond its average of the Gaussian 
distribution, e.g., 10th percentile, and 90th percentile 
which applied in this study. Examining the different 
percentiles using quantile regression may be more 
beneficial for continuous improvement and cost 
savings. 

Lasso quantile regression is a regularization 
technique for simultaneous estimation and variable 
selection where the classical variable selection 
methods are often highly time consuming and maybe 
suffer from instability. L1 and L2 penalized estimation 
methods shrink the estimates of the regression 
coefficients towards zero relative to the maximum 
likelihood estimates. The purpose of this shrinkage is 
to prevent over fit arising due to either collinearity of 
the covariates or high-dimensionality. 

The study evaluates the performance for the two 
methods; Lasso linear (L1-Lasso and L2-Lasso). The 
two methods are used to select the best subset of 
variables and estimate the parameters of the quantile 
regression equation when three error distributions, 
with three sample sizes and two different parameters 
for each error distribution. Estimated risk which 

produced by L1-Lasso is less than ER which produced 
L2-Lasso methods. 

5- Conclusion 

1- The two methods are used to select the best 
subset of variables. Two suggested methods 
deleting the same variables that lead to the 
motivation for variable selection that the 
deleting variables from the model can improve 
the precision of parameter estimates. 

2- The two methods are used to estimate the 
parameters of the quantile regression 
equation. Estimated risk is used to measure 
the performance of the methods. L1-Lasso 
method is much better than, L2-Lasso method. 

3- Two methods are used to select the best 
subset of variables and to estimate the 
parameters with different quantile regression 
values. Different quantile regression may be 
more beneficial for continuous improvement 
and cost savings. 

4- The performance for the L1-Lasso when are 
used to select the best subset of variables, 
estimate the parameters with quantile 
regression is much better with small sample 
sizes. 

5- The performance for the L1-Lasso when it is 
used to select the best subset of variables, to 
estimate the parameters with two error 
distributions, with two different parameters for 
each error distribution much better with fat-
long tailed distribution. 

All results showed superiority of 𝐿1 -Lasso 

compared with 𝐿2-Lasso linear programming methods. 

Table (2) Estimated risks of the 𝑳𝟏-Lasso and𝑳𝟐-
Lasso Estimates for Lognormal (0, 2.5) 

 

N=10 N=15 N=20 

𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐- 𝑳𝟏 𝑳𝟐 

 
𝜌
=
0
.1

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 0.428 0.466 0.073 0.482 0.071 0.212 

𝛽2 0.420 0.631 0.142 0.489 0.098 0.228 

𝛽3 0.558 0.327 0.152 0.408 0.111 0.210 

𝛽4 0.582 0.450 0.157 0.746 0.127 0.198 

𝛽5 0.385 0.237 0.223 0.522 0.105 0.265 

𝛽6 1.520 0.377 0.13 0.464 0.096 0.200 

𝛽7 0.532 0.440 0.166 0.542 0.092 0.285 

𝛽8 0.524 0.332 0.144 0.427 0.114 0.268 

 
𝜌
=
0
.9

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 2.867 3.75 0.099 0.086 0.070 0.068 

𝛽2 1.491 2.02 0.220 0.067 0.076 0.068 

𝛽3 2.605 2.77 0.237 0.074 0.080 0.076 

𝛽4 3.008 3.85 0.196 0.079 0.100 0.071 

𝛽5 1.212 2.80 0.192 0.074 0.082 0.071 

𝛽6 1.960 3.90 0.185 0.084 0.087 0.068 

𝛽7 1.096 1.88 0.246 0.087 0.081 0.070 

𝛽8 1.274 1.32 0.172 0.078 0.098 0.070 
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Table (3) Estimated risks of the 𝑳𝟏-Lasso and𝑳𝟐-
Lasso Estimates for lognormal (0, 0.3) 

 

N=10 N=15 N=20 

𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 

 
𝜌
=
0
.1

 
 𝐸
𝑅

 

𝛽0 0.72 0.072 0.072 0.072 0.072 0.072 

𝛽1 0.075 0.157 0.072 0.072 0.066 0.068 

𝛽2 0.118 0.93 0.065 0.071 0.065 0.067 

𝛽3 0.071 0.259 0.072 0.069 0.066 0.072 

𝛽4 0.098 0.111 0.068 0.071 0.066 0.067 

𝛽5 0.122 0.123 0.064 0.071 0.066 0.069 

𝛽6 0.075 0.143 0.067 0.080 0.066 0.068 

𝛽7 0.069 0.92 0.063 0.070 0.065 0.069 

𝛽8 0.088 0.178 0.064 0.073 0.065 0.066 

 
𝜌
=
0
.9

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 0.109 0.160 0.080 0.073 0.070 0.070 

𝛽2 0.279 0.103 0.107 0.067 0.075 0.070 

𝛽3 0.364 0.147 0.087 0.066 0.079 0.068 

𝛽4 0.282 0.149 0.084 0.068 0.098 0.073 

𝛽5 0.245 0.115 0.096 0.074 0.082 0.071 

𝛽6 0.546 0.135 0.095 0.069 0.089 0.069 

𝛽7 0.357 0.119 0.096 0.075 0.081 0.069 

𝛽8 0.239 0.120 0.119 0.069 0.098 0.68 

Table (4) Estimated risks of the 𝑳𝟏-Lasso and𝑳𝟐-
Lasso Estimates for Cauchy (0, 0.9) 

 

N=10 N=15 N=20 

𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 

 
𝜌
=
0
.9

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 3.875 61064.623 0.896 17022.547 0.271 4431.811 

𝛽2 7.226 36554.527 0.835 15232.509 0.358 6091.063 

𝛽3 7.228 35935.199 0.905 13030.700 0.225 5550.617 

𝛽4 8.208 34853.870 1.121 14294.785 0.258 4480.318 

𝛽5 18.596 27180.332 1.288 13437.302 0.675 5037.966 

𝛽6 9.604 47656.138 1.065 17228.064 0.38 5478.853 

𝛽7 3.387 24040.182 1.252 11652.591 0.342 4382.749 

𝛽8 6.429 33259.976 0.679 13330.215 0.286 5100.825 

 
𝜌
=
0
.1

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 27.774 30587.310 4.847 10.724 0.433 0.068 

𝛽2 75.468 79361.83 6.652 2.280 0.820 0.075 

𝛽3 271.99 28971.374 1.107 16.649 0.459 0.074 

𝛽4 815.509 28874.940 49.391 0.129 2.29 0.072 

𝛽5 21.229 32789.991 3.274 2.638 0.584 0.074 

𝛽6 237.121 43268.701 141.47 10.871 0.746 0.070 

𝛽7 131.379 35764.517 6.81 7.026 1.609 0.074 

𝛽8 124.347 26498.139 27.021 2.621 0.753 0.079 

Table (5) Estimated risks of the 𝑳𝟏-Lasso and𝑳𝟐-
Lasso Estimates for Cauchy (0, 0.5) 

 

N=10 N=15 N=20 

𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 

 
𝜌
=
0
.1

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 4.650 13327.26 3.792 5245.262 0.193 1383.480 

𝛽2 14.201 25209.96 1.440 4841.157 0.171 1851.774 

𝛽3 47.505 10127.5 2.122 3926.302 0.106 1756.187 

𝛽4 12.589 8785.645 6.284 4346.578 0.322 1389.320 

𝛽5 3.380 11750.23 1.141 3877.916 0.110 1593.225 

𝛽6 53.704 12944.63 6.708 5246.261 0.163 1749.799 

𝛽7 39.847 11450.78 1.085 3584.331 0.230 1456.853 

𝛽8 33.689 10056.92 4.834 4093.229 0.091 1483.577 

 
𝜌
=
0
.9

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 3.307 19174.57 0.330 3.275 0.070 0.076 

𝛽2 0.701 11498.83 0.216 0.735 0.073 0.078 

𝛽3 0.830 10965.4 0.113 5.151 0.078 0.071 

𝛽4 5.158 10738.5 0.280 0.094 0.118 0.173 

𝛽5 1.719 8121.073 0.168 0.847 0.098 0.170 

𝛽6 4.811 14885.38 0.177 3.351 0.076 0.076 

𝛽7 1.623 7534.33 0.177 2.166 0.072 0.072 

𝛽8 5.242 10080.526 0.295 0.819 0.105 0.172 

Table (6) Estimated risks of the 𝑳𝟏-Lasso and𝑳𝟐-
Lasso Estimates for Skewed normal (0, 12) 

 

N=10 N=15 N=20 

𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 

 
𝜌
=
0
.1

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 0.653 6.64 0.758 2.564 0.063 1.245 

𝛽2 0.749 5.408 0.336 2.711 0.058 1.172 

𝛽3 0.298 8.449 0.176 2.416 0.057 1.127 

𝛽4 0.258 5.603 0.292 2.468 0.060 1.042 

𝛽5 0.634 5.668 0.129 2.785 0.060 1.158 

𝛽6 0.667 6.908 0.109 2.031 0.061 1.136 

𝛽7 0.490 5.581 0.521 2.651 0.059 1.083 

𝛽8 0.072 7.299 0.124 2.474 0.071 1.147 

 
𝜌
=
0
.9

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 4.609 6.64 1.134 2.564 0.501 1.37 

𝛽2 4.932 5.408 1.290 2.711 0.942 1.212 

𝛽3 7.417 8.449 1.494 2.416 0.821 1.241 

𝛽4 4.276 5.603 1.614 2.468 1.090 0.97 

𝛽5 5.764 5.668 1.695 2.785 1.107 1.187 

𝛽6 5.481 6.908 1.785 2.031 0.772 1.078 

𝛽7 5.304 5.581 1.874 2.651 0.920 1.269 

𝛽8 4.629 7.299 1.867 2.474 0.751 1.488 

Table (7) Estimated risks of the 𝑳𝟏-Lasso and𝑳𝟐-
Lasso Estimates for Skewed normal (0, 20) 

 

N=10 N=15 N=20 

𝑳𝟏 𝑳𝟐 𝑳𝟏 𝑳𝟐 𝑳𝟏 𝐿2 

 
𝜌
=
0
.1

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 0.653 17.741 0.758 6.773 0.063 4.123 

𝛽2 0.749 20.415 0.336 7.242 0.058 3.577 

𝛽3 0.298 20.301 0.176 8.479 0.057 3.971 

𝛽4 0.258 16.370 0.292 12.020 0.060 3.220 

𝛽5 0.634 21.106 0.129 6.899 0.060 3.607 

𝛽6 0.674 17.984 0.109 7.639 0.061 3.512 

𝛽7 0.667 15.155 0.521 7.569 0.059 3.577 

𝛽8 0.490 21.573 0.124 5.751 0.071 4.445 

 
𝜌
=
0
.9

 
 𝐸
𝑅

 

𝛽0 0.072 0.072 0.072 0.072 0.072 0.072 

𝛽1 4.609 17.157 1.134 6.054 0.501 3.726 

𝛽2 4.932 17.918 1.29 6.808 0.942 3.629 

𝛽3 7.417 22.314 1.494 8.057 0.821 3.299 

𝛽4 4.276 20.737 1.614 7.532 1.090 3.233 

𝛽5 5.764 14.802 1.695 7.364 1.107 3.608 

𝛽6 5.481 19.507 1.785 5.816 0.772 3.603 

𝛽7 5.304 15.642 1.874 8.103 0.92 3.401 

𝛽8 4.629 17.854 1.867 8.240 0.751 3.140 
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