
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 3, March - 2015 

www.jmest.org 

JMESTN42350526 384 

Analyzing User Behavior Using MapReduce 
Vikhyat Gupta 

Department of Computer Science 
University of Bridgeport 

Bridgeport, USA 
vigupta@my.bridgeport.edu 

Tarik El Taeib 
Department of Computer Science 

University of Bridgeport 
Bridgeport, USA 

teltaeib@my.bridgeport.edu
 

Abstract— Big Data involves large volume of 
data, which cannot be processed using traditional 
tools. These data sets are complex and evolves 
continuously in real time. The challenge is to 
analyze and extract useful knowledge from this 
volume of data. 

To process this large amount of data we will 
use a parallel programming tool, MapReduce, 
which can process and generate large data sets. 

There are many areas which can increase their 
profits by catering to the user needs. Hence, we 
need some techniques to analyze the user 
behavior and accordingly generate some patterns. 
As the number of users in every sector of the 
market are exponentially increasing, resulting in 
the increase of the volume of the log files. These 
files are usually not structured and must be 
analyzed in a reasonable amount of time. In this 
paper we will propose some general ideas by 
which we can gather user behavior and how that 
information can be used to generate further 
information specific to a user. We will use apache 
Hadoop as our framework that will implement 
MapReduce to analyze these patterns in an 
acceptable time. Based on these patterns, we can 
suggest the user of the other related patterns. 

Keywords— Big data, Data mining, Hadoop, 
MapReduce, user behavior analysis 

I. INTRODUCTION 

First we will look at the scenario describing big 
data, its various complexities; it’s continuously 
evolving nature and see how normal computing 
processes will be insufficient to extract knowledge in 
least possible time. Also, we will see how parallel 
processing paradigms are so efficient with big data. 

Researches show that, 90% of the data has been 
generated in the last two years itself. The average 
data generated every day is in quintillions of volume. 
This user data usually comes when a user surfs the 
internet, logs in to an account, buys stuff (which 
further generates more data) and so on, This data is 
usually unstructured may be in the form of log files, 
images, emails and other data. This amount of data 
cannot be processed by the traditional tools. Further, 
we need algorithms to extract useful information from 
this data. Hence, we need some framework that does 
this data analysis efficiently in real time. 

Now this data is usually distributed (that is, not 
centralized), complex and keeps on evolving. For 

instance, a user may keep on updating their 
information and the organization must keep pace with 
this data evolution in order to serve the user in an 
appropriate manner. Fig 1 depicts this scenario, 
where there are four blind persons and they are trying 
to communicate information to each other in order to 
form a collaborative information.[1] 

 

Fig.1. The blind men and the giant elephant: the 
localized (limited) view of each blind man leads to a 
biased conclusion. [1] 

Here, each user may perceive information as they 
see it. One may perceive the leg as a pole, one may 
perceive the tail as a rope and so on. This is due to 
the fact that each person is working in their local 
region. Also, there could be a situation in which the 
elephant is not stable and is growing. This would lead 
to more complexities. In general, data is also collected 
through various heterogeneous sources and is subject 
to various complexities. 

Why distributed data is preferred? 

 If centralized data is attacked by any virus, 
then the complete data is at risk. 

 Distributed data need not depend on any 
central system to gather information. 

 Each system can generate their own data 
relative to the location in which they are 
situated. 

II. WORKING ON BIG DATA 

MapReduce is a paradigm without any actual 
source code and its design patterns are platform 
independent. A number of programming models have 
been developed to implement MapReduce. We will 
use Hadoop as our model to implement MapReduce. 
[2] 

The map and the reduce tasks run in a distributed 
fashion on a cluster of machines to enable parallel 
processing. Map task generally loads, parses and 

http://www.jmest.org/
mailto:vigupta@my.bridgeport.edu
teltaeib@my.bridgeport.edu


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 3, March - 2015 

www.jmest.org 

JMESTN42350526 385 

filters data. Its output are intermediate keys and 
values. The reduce task handles a subset of the map 
task output by merging the intermediate values. This 
paradigm lends high scalability for data processing. [3] 

As we know, MapReduce works in two phases, 
map and reduce. Users specify a map function that 
processes a key/value pair to generate a set of 
intermediate key/value pairs, and a reduce function 
that merges all intermediate values associated with 
the same intermediate key. [4] 

 

Fig.2. Execution overview.[4] 

We can use MapReduce paradigm for prediction 
analysis. Given a large unstructured database, we can 
do the following from the perspective of prediction- 

 We can see number of occurrence of a 
particular item and predict further information 
according to a more specialized constraint. 

Example- Suppose we have a Toy database, we 
can see the demand of each toy according to 
different age group or according to different 
categories of toys. Hence, we can maintain 
stock accordingly. 

 If we have a user login for a particular 
application that also maintains a large 
database, we can see the interests of the user 
by monitoring the frequency of the user’s visit 
to a particular item. Hence, we can give 
predictions to the user according to the data 
generated. 

Example- Suppose a user looks for cell phones on 
a shopping website. If the user frequently looks for a 
cell phone of a particular brand, we can suggest 
phones from the same brand; further we can give 
suggestions for the same price range for which the 
user is constantly looking for. 

III. THE IDEA 

This paper gives a general idea as to how we can 
use MapReduce paradigm to an unstructured 
database to extract useful information. It further 
discusses how we can use this extracted information. 

To understand it, let us look at an example- 

 

Fig.3. A fraction of Food Review Database 

Food review database represented in Fig.3., is an 
unstructured database, hence we cannot run SQL 
commands on it to extract information to our needs. 
Hence, we use Hadoop and put the database over the 
HDFS. Its scalability is improved by adding clusters to 
it and thus making it more distributed. 

The food company can judge the user demands by 
analyzing their top rated and bottom rated products 
and hence keep the stock accordingly. 

 

Fig.4. Number of reviews for all the products 

We can get all the products corresponding to a 
user and see what products they use the most –user 
behavior. Based on this information we can suggest 
the user of some similar products. 

The above scenario is possible if have a static 
copy of a database. In this case, other than this we 
can cluster the database and find number of reviews 
for a particular product. This helps to get a rough 
estimate as to which product is the most reviewed -

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 3, March - 2015 

www.jmest.org 

JMESTN42350526 386 

Fig.4. We can also see all the scores given by a user 
–Fig.5. 

 

Fig.5. Scores by a user 

We can perform many such tasks. All of this 
extraction of information and can be used in one way 
or the other. Having such information is beneficial for 
an organization as it helps them to function 
accordingly. 

If the database is dynamic and is continuously 
evolving, we can analyze user behavior by any of the 
two ways- 

 Users can login and then access their 
accounts. This would help maintain their 
activity. 

 A session can be maintained. As soon as a 
user enters a website, a session is maintained 
and all his activities are stored for a session. 

Applying any of the methods, we can cater to a 
dynamically evolving database in real time. 

This is a general idea as to how we can use a 
database to extract information and further use that 
information. 

Use of parallel processing mechanism is essential. 
The term Big data corresponds to a data that is 
voluminous. Parallel processing tools works in a 
distributed fashion and computes the result 
simultaneously. If some other mechanism is 
employed, computing this large data will be 
cumbersome and the results generated will take 
longer than such mechanisms. 

In the above example, MapReduce effectively 
makes chunks of the database and distributes them to 
all the clusters. The clusters then processes the data 
and generate their individual results. These results are 
aggregated by the master machine. Hence, the 
amount of time is divided by the number of clusters. 
These clusters also provide high fault tolerance. The 
data is duplicated on other clusters in case a node 
experiences a failure. 

IV. RELATED WORK 

The paper "MapReduce: Simplified Data 
Processing on Large Clusters" by Jeffrey Dean and 
Sanjay Ghemawat [2] first discussed how google used 
MapReduce on such large volume of data. This paper 
helped follow many variations in MapReduce to 
process data. Kim et al. [5] used MapReduce to 
analyze user behavior in order to maximize profits of 
IPTV providers. Akdogan et al. [6] discussed the 
problem of processing parallel geospatial query using 
MapReduce. Tsai et al. [7] proposed how cloud 
services can be improved by Mapreduce to define a 
better service replication. Wei et al. [8] further 
explored the aspects of MapReduce by proposing 
SecureMR that assures service integrity. 

V. CONCLUSION 

MapReduce is fairly easy to implement as most of 
the work is taken care by the framework itself. Task 
scheduling, job scheduling, failure handling are all 
handled by Hadoop. MapReduce model transforms 
the data into sets of keys and values. As MapReduce 
employs batch processing model, it gives result in an 
ad hoc manner. RDBMS is good when data size to be 
processed is in gigabytes, whereas Hadoop can 
process data upto petabytes. Hadoop efficiently 
extracts knowledge from unstructured database which 
is possible through RDBMS. 

This paper discussed how we can use the 
extracted information. First, we saw that the data 
today is not only growing, but is also complex and 
continuously evolving. Then we saw the need to use 
parallel programming tools like Hadoop to process this 
big data. Lastly, the rest of the paper discussed how 
we can analyze user behavior from the data we 
extract using MapReduce and use it to further make 
suggestions to user. These suggestions help the user 
to make more informed decisions. It also helps the 
organizations to maximize their profits by exploiting 
user behavior to their use. 

REFERENCES 

[1] Xindong Wu; Xingquan Zhu; Gong-Qing Wu; 
Wei Ding, "Data mining with big data," Knowledge and 
Data Engineering, IEEE Transactions on , vol.26, 
no.1, pp.97,107,Jan.2014 

[2] O’Reilly – Hadoop: The Definitive Guide – By 
Tom White 

[3] O’Reilly – MapReduce Design Patterns – By 
Donald Miner and Adam Shook 

[4] Jeffrey Dean; Sanjay Ghemawat, 
"MapReduce: Simplified Data Processing on Large 
Clusters", USENIX OSDI,2004. 

[5] Joohee Kim; Chankyou Hwang; Eunkyoung 
Paik; Youngseok Lee, "Analysis of IPTV user 
behaviors with MapReduce," Advanced 
Communication Technology (ICACT), 2012 14th 
International Conference on, vol., no., pp.1199,1204, 
19-22 Feb. 2012 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 3, March - 2015 

www.jmest.org 

JMESTN42350526 387 

[6] Akdogan, A.; Demiryurek, U.; Banaei-
Kashani, F.; Shahabi, C., "Voronoi-Based Geospatial 
Query Processing with MapReduce," Cloud 
Computing Technology and Science (CloudCom), 
2010 IEEE Second International Conference on , vol., 
no., pp.9,16, Nov. 30 2010-Dec. 3 2010 

[7] Tsai, W.-T.; Peide Zhong; Elston, J.; Xiaoying 
Bai; Yinong Chen, "Service Replication Strategies with 

MapReduce in Clouds," Autonomous Decentralized 
Systems (ISADS), 2011 10th International Symposium 
on , vol., no., pp.381,388, 23-27 March 2011 

[8] Wei Wei; Juan Du; Ting Yu; Xiaohui Gu, 
"SecureMR: A Service Integrity Assurance Framework 
for MapReduce," Computer Security Applications 
Conference, 2009. ACSAC '09. Annual , vol., no., 
pp.73,82, 7-11 Dec. 2009 

 

http://www.jmest.org/

