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Abstract

In this lecture we discuss some interesting
developments in the modern theory of electromag-
netic field(s). In particular, by using the meth-
ods developed in Dirac’s constraint dynamics we
derive the Schrödinger equation for the free elec-
tromagnetic field. The electromagnetic field that
arises only contains combinations of transverse
photons and does not include any scalar and/or
longitudinal photons. This approach is also used
to determine and investigate the actual symmetry
of the free electromagnetic field. Then we dis-
cuss the Majorana representation of the Maxwell
equations, the symmetric form of Maxwell equa-
tions and an original approach to electrodynamics
called the “scalar electrodynamics”.

1 Introduction

In 2012 we have celebrated an important anivesary for the
whole modern physics and for the theory of fields. Indeed,
one hundred and fifty years ago James Clerk Maxwell pre-
sented his famous equations [1] in a closed and relatively
simple form. These equations described results of vari-
ous electric and magnetic experiments known at that time
(see, e.g., [2] and references therein). Moreover, it followed
directly from those equations that all electric and magnetic
phenomena can be explained with the use of the united
‘electro-magnetic field’. In the general case, the corre-
sponding vectors (E,H) include six components each of
which is a function of the spatial (Cartesian) coordinates
r and time t. The propagation of the free electromag-
netic fields in four-dimensional space-time continuum was
discovered later by Hertz (theoretically) and has become
a most crucial part of today’s human communications.
Step-by-step, Maxwell equations started to be applied to
very large spectrum of phenomena many of which were not
originally considered as being electric, or magnetic. These
equations successfully survived two great events in physics
of the last century: (a) the Galilean-Lorentz crisis around
1900 - 1905, and (b) the appearance of Quantum Mechan-
ics around 1925 - 1927. Presently the whole Maxwell the-
ory of electro-magnetic phenomena is considered to be a
solid and absolute construction in modern physics. The
age of this theory is also outstanding and it is in many
dozens times larger than an average ‘time-life’ of 99.99 %
of the ‘fundamental’ theories being developed today.

In this brief notice I want to show that our understand-
ing of the Maxwell equations is still a very interesting and
evolving area of theoretical physics. In particular, by fol-
lowing Dirac we will see how Maxwell equations survived
another crucial event in the physics of XX century - a tran-
sition to another mechanics which was created by Dirac in
1951 for Hamiltonian systems with constraints and now
it is known as the ‘constraint dynamics’. We also dis-
cuss the dynamical symmetry of the free electromagnetic
filed(s), the Majorana form of the Maxwell equations and
the co-existence of our ‘electric’ and alternative ‘magnetic’
worlds. These two worlds can be located at the same spa-
tial place, but cannot interect with each other directly.
The only possible communication between our ‘real’ and
alternative ‘ghost’ worlds comes in the lowest-order ap-

proximation in the fine structure constant α = e2

h̄c ≈
1

137
due to radiation. Finally, we discuss so-called scalar elec-
trodynamics - a new approach to electrodynamics which
is based on the using only four scalar functions.

In general, a detailed description of the time-evolution
of various physical systems and fields is a fundamen-
tal problem which arises in many areas of physics. Ex-
plicit derivation of the equations which govern the time-
evolution of physical systems and fields is the most in-
teresting part of physics. In Quantum Electrodynamics
(QED) the time-evolution of the electromagnetic field (or,
EM-field, for short) is governed by the Schrödinger (or
Heisenberg) equations for each of the field components.
For the free EM-field(s) such an equation is known since
the end of 1920’s [3] - [5]. Later, analogous equations were
obtained for arbitrary electromagnetic fields which inter-
act with electrons and positrons [6], [7]. By solving such
equations people answered a significant number of ques-
tions which arose in Quantum Electrodynamics. However,
the main disadvantage of these (Schrödinger) equations
was a presence of indefinite numbers of the scalar and lon-
gitudinal photons. In general, the presence of arbitrary
numbers of scalar and longitudinal photons transforms all
QED-calculations into extremely painful process, which
in many cases does not lead to a consistent answer. To
avoid complications related to the presence of large (even
infinite) numbers of the scalar and longitudinal photons
scientists working in this area developed quite a num-
ber of clever tricks and procedures. The most recent and
widely accepted approach is based on exact compensation
of the scalar photons by an equal number of longitudinal
photons. All such procedures, however, are not based on
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an internal logic of the original QED-theory of the EM-
field(s).

In 1950’s Dirac developed his famous mechanics [8], [9]
of the constrained dynamical systems with Hamiltonians.
By applying this mechanics to the free electromagnetic
field one finds that it produces the EM-field which is rep-
resented as a linear combination of only transverse photons
and does not include any scalar and/or longitudinal pho-
tons. In other words, such a EM-field can directly be used
in QED calculations to determine the probabilities of dif-
ferent processes. Briefly, we can say that Dirac constraint
dynamics (or Dirac mechanics) allows one to produce elec-
tromagnetic field which is physical, i.e. it does not include
any of the ghost components. Therefore, we can investi-
gate the properties of such a field and assume that this
field coincides with the actual (or physical) EM-field. In
particular, we can determine the actual symmetry of the
equations of the free electromagnetic field.

2 Hamiltonian

Following Dirac [9] we begin our analysis from the La-
grangian L of the free electromagnetic field written in the
Heaviside-Lorentz units (see, e.g., [10])

L = −1

4

∫
FµνF

µνdxdydz = −1

4

∫
FµνF

µνd3x , (1)

where the integration is over three-dimensional space and
Fµν and Fµν are the covariant and contravariant compo-
nents of the F−tensor which is uniformly related with the
corresponding derivatives of the field potential Aµ (or Aν)
by the relations

Fµν = Aν,µ −Aµ,ν , (2)

where the suffix with the comma before it means dif-
ferentiation according to the following general scheme
T,µ = dT

dxµ , where T is an arbitrary quantity (or tensor)
and x = (x0, x1, x2, x3) is the point in the four-dimensional
space-time. Note that the suffix ‘0’ with the comma before
it designates the temporal derivative (or time derivative),
while analogous notations with suffixes 1, 2 and 3 mean
the corresponding spatial derivatives.

Following Dirac [9] we need to construct the Hamil-
tonian of the free electromagnetic field by using the La-
grangian L from Eq.(1). First, by varying the correspond-
ing velocities, i.e. temporal components of the tensor F ,
we introduce the momenta Bµ

δL = −1

2

∫
FµνδFµνd

3x =

∫
Fµ0δAµ,0d

3x =∫
BµδAµ,0d

3x ,

(3)

As follows from Eq.(3) the momenta Bµ are defined
by the equalities Bµ = Fµ0 = −F 0µ, which follow from
Eq.(3), and antisymmetry of the F−tensor, i.e. from
Fµν = −F νµ (see, e.g., [6], [9] and [10]). From this defini-
tion of the momenta one finds that B0 equals zero identi-
cally, since B0 = F 00 = −F 00 = −B0. This is the primary

constraint which is designated in Dirac’s constrained dy-
namics as B0 ≈ 0. In Quantum Elelctrodynamics this
can be written in the more informative form B0Ψ = 0 (or
B0 | Ψ〉 = 0), where Ψ (also | Ψ〉) is the wave function
of the free electromagnetic field. Briefly, this means that
for all states of the free electromagnetic field which are
of interest for our purposes below we have B0Ψ = 0, or
B0 | Ψ〉 = 0.

Now, we can construct the Hamiltonian of the free elec-
tromagnetic field, or EM-field, for short. It should be
mentioned here that any Hamiltonian determines a sim-
plectic structure with the dimension 2n + 1, where 2n is
the number of dynamical variables, i.e. n coordinates and
n momenta conjugate to these coordinates. For the free
electromagnetic field in three-dimensional space we have
four generalized coordinates Aµ = (A0, A1, A2, A3) of the
field, or four-vector (φ,A) of the field potentials in the
traditional EM−notations. The momenta Bµ conjugate
to these coordinates also form 4-vector (B0, B1, B2, B3).
The Poisson brackets between these dynamical variables
must be equal to the delta-function, i.e.

[Bµ(x), Aν(x′)] = −[Aν(x), Bµ(x′)] = −gµν δ3(x− x′) (4)

All other Poisson brackets between these dynamical vari-
ables, i.e. the [Bµ(x), Bν(x′)] and [Aµ(x), Aν(x′)] brack-
ets, equal zero identically.

By using the Lagrangian, Eq.(1), and explicit formulas
for the momenta Bµ = Fµ0 = −F 0µ we can obtain the
explicit expression for the Hamiltonian H. The first step
here is to write the Hamiltonian in terms of the velocities
(Aµ,0 and Fr0):

H =

∫
BµAµ,0d

3x− L =∫
(F r0Ar,0 +

1

4
F rsFrs +

1

2
F r0Fr0)d3x ,

(5)

where the indexes r and s stand for the spatial indexes, i.e.
r = 1, 2, 3, and s = 1, 2, 3. For the first term in the second
equation we can write Ar,0 = F0r − A0,r = −Fr0 − A0,r

(this follows from the definition of Fµν , Eq.(2)). This al-
lows one to transform the Hamiltonian, Eq.(5), to the form

H =

∫
(
1

4
F rsFrs −

1

2
F r0Fr0 + F r0A0,r)d

3x =∫ (1

4
F rsFrs +

1

2
BrBr − (Br),rA0

)
d3x ,

(6)

where we introduce the momenta Br and integrated the
last term (F r0A0,r) by parts. This is the explicit for-
mula for the Hamiltonian H of the free electromagnetic
field. Let us investigate this Hamiltonain H, Eq.(6).
First, it is easy to see that the Poisson bracket of the
momentum B0 and the Hamiltonian H (i.e. [B0, H])
equals (Br),rδ

3(x − x′). In Dirac’s constrained dynam-
ics the Poisson brackets between the primary constraints
and Hamiltonian determine the secondary constraints. In
other words, the secondary constraint for the free elec-
tromagnetic field equals (Br),r, i.e. to the sum of spa-
tial derivatives of the corresponding components of the
momenta Br. In three-dimensional notations this value
equals to divB.
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By determining the Poisson bracket between the sec-
ondary constraint (Br)r and the Hamiltonian, Eq.(6), one
finds that it equals zero identically. This means that
Dirac’s procedure is closed, since no (non-zero) tertiary
constraints have been found. The final expression for the
total Hamiltonian HT of the electromagnetic field is

HT = H +

∫
v(x1, x2, x3)B0d3x =∫ (1

4
F rsFrs +

1

2
BrBr −A0(Br)r + vB0

)
d3x ,

(7)

where v = v(x1, x2, x3) is an arbitrary coefficient defined
in each point of three-dimensional space. This Hamilto-
nian is a ‘classical’ expression. Our next goal is to quan-
tize and obtain the quantum Hamiltonian operator which
corresponds to the classical Hamiltonian, Eq.(7). This
problem is considered in the next Section.

3 Quantization

The total Hamiltonian HT , Eq.(7), derived above allows
one to perform the quantization of the free electromagnetic
field and derive the Schrödinger equation which describes
time-evolution of the EM-field. The general process of
quantization for various classical systems with Hamiltoni-
ans is described in detail in various textbooks (see, e.g,
[11], [12] and [13]). Briefly, such a process of quantiza-
tion can be represented as a following two-step procedure.
The first step is the replacement of the classical fields by
the corresponding quantum operators. The classical Pois-
son bracket, Eq.(4), is replaced by the quantum Poisson
bracket in which all classical momenta are replaced by the
differential operators. The quantum Poisson bracket for
two operators of the electromagnetic field must include
the reduced Plank constant h̄ = h

2π and, may be, the
speed of light in vacuum c. The presence of the speed of
light in the expressions for Poisson brackets depends upon
the explicit form of the field operators and the units used.
For the operators Bµ(x) and Aν(x′) defined above the
transformation from the classical to the quantum Poisson
bracket is written in the form

[Bµ(x), Aν(x′)]C = −gµν δ3(x− x′)→
[Bµ(x), Aν(x′)]Q = h̄(−gµν )δ3(x− x′) ,

(8)

where Bµ(x) and Aν(x′) are the operators and Bµ(x) is
the differential operator in the Aν(x)-representation (or
coordinate representation). Other notations in Eq.(8)
have the same meaning as in Eq.(4). The second step
of the quantization process is the explicit introduction of
the wave function Ψ which depends upon time t and all
coordinates of the dynamical system, i.e. upon the Aµ =
(A0, A1, A2, A3) components of the electromagnetic field,
i.e. Ψ = Ψ(A0, A1, A2, A3). The Hamiltonian and other
‘observable’ quantities must now be considered as opera-
tors which act (or operate) on such wave functions. At this
point we have to introduce the system of traditional nota-
tions for different components of the electromagnetic field
and their derivatives. The four-vector potential of the elec-
tromagnetic field is represented as the unique combination

of its scalar component A0, which is usually designated as
φ, and three remaining components, which form a three-
dimensional vector A = (A1, A2, A3) = (Ax, Ay, Az) (see,
e.g., [6] and references therein). The wave function of the
electromagnetic field Ψ is a function of the scalar φ and
vector A, i.e. Ψ = Ψ(φ,A).

As follows from the definition of momenta of the free
electromagnetic field (Bµ = Fµ0 = −F 0µ) such momenta
essentially coincide with the corresponding components
of the electric field E, i.e. Bµ = −F 0µ = Eµ = −Eµ.
On the other hand, as follows from Eq.(8) the same mo-
menta can be considered as differential operators in the
Aν(x)-representation, or coordinate representation. In
other words, we can also choose the following definition of
the momenta Bµ(x) = − ∂

∂Aν(x) , or Bµ(x) = −h̄ ∂
∂Aν(x) in

the case of quantum Poisson brackets. For general Hamil-
tonian systems such a twofold representation of momenta
are acceptable, since transition from one to another does
not change the fundamental Poisson brackets and, there-
fore, does not lead to any noticeable contradiction with the
reality and/or with the first principles of the Hamiltonian
approach. Now, we can write for the primary constraint

−h̄ ∂

∂φ
| Ψ(φ,A)〉 = 0 (9)

This means that the wave function | Ψ〉 of the free elec-
tromagnetic field cannot depend upon the scalar compo-
nent (or φ−component), i.e. | Ψ〉 = Ψ(A1, A2, A3) =
Ψ(Ax, Ay, Az), where Ax, Ay and Az are the three Carte-
sian coordinates of the vector A.

An arbitrary three-dimensional vector A =
(Ax, Ay, Az) can always be represented (see, e.g., [14])
as a linear combination of its longitudinal A‖ and two

transverse A
(1)
⊥ , A

(2)
⊥ components, i.e. A = (Ax, Ay, Az) =

(A‖, A
(1)
⊥ , A

(2)
⊥ ). By using the standard methods of vector

analysis (see, e.g., [14]) it can be shown that the condition
divA = 0 in each spatial point is equivalent to the equality
A‖ = 0 which must be obeyed in each spatial point. Now,
the secondary constraint is written in the form

−h̄ ∂

∂A‖
| Ψ(A)〉 = 0 (10)

which leads to the conclusion that the vector | Ψ(A)〉 de-

pends upon the two transverse components (A
(1)
⊥ , A

(2)
⊥ )

only. In other words, for the free electromagnetic field
only those states (or wave functions) are acceptable for

which | Ψ〉 =| Ψ(A
(1)
⊥ , A

(2)
⊥ )〉. Formally, for the free elec-

tromagnetic field one can use only such spatial vectors
which have only two components (at arbitrary time t).
Moreover, since E = − 1

c
∂A
∂t , then the vector of electric

field E also has the two spatial components only. To sim-
plify our notation below, we shall assume that electromag-
netic wave always propagates into z−direction (in each
spatial point) and it has two non-zero components (x−
and y−components). This means that | Ψ〉 =| Ψ(Ax, Ay)〉
and Az = A‖ = 0. This important result will be used
below.

The knowledge of the Hamiltonian H written in the
canonical variables of ‘momenta’ E and ‘coordinates’ A
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of the electromagnetic field allows one to obtain all equa-
tion(s) of the time-evolution of the free electromagnetic
field. In reality, there is an additional problem here related
with the fact that the Hamiltonian contains only special
combinations of spatial derivatives of the coordinates, i.e.
curlA, rather than coordinates A = (Ax, Ay, Az) them-
selves. This problem is solved by considering the spatial
Fourier transform of the ‘coordinates’, or components of
the vector A. To simplify analysis even further we rep-
resent the original Fourier transform in a ‘discrete’ form,
i.e. as an infinite sum, e.g.,

A =
∑
kα

(
ckαAkα + c∗kαA

∗
kα

)
=

∑
kα

√
c2

2ω

[
e(α) exp(ık · r)ckα+

e(α)∗ exp(−ık · r)c∗kα

]
(11)

where Akα = e(α) exp(ık·r)
√

c2

2ω are the normalized plane

waves (in the Heaviside-Lorentz units), ω = c | k | and
e(α) · e(β)∗ = δαβ . Analogous plane-wave expansions for
the electric E and magnetic H fields are

E =
∑
kα

(
ckαEkα + c∗kαE

∗
kα

)
,

H =
∑
kα

(
dkαHkα + d∗kαH

∗
kα

) (12)

where Ekα = ıωAkα and Hkα = ıω(n ×Akα), The am-
plitudes ckα, dkα and their complex conjugate c∗kα, d

∗
kα

in such expansions are now considered as a canonical
(Hamiltonian) variables. Sometimes it is more convenient
to introduce the new canonical variables which are the
linear combinations of the ckα and c∗kα amplitudes and
dkα and d∗kα. The only non-trivial Poisson bracket is
[ckα, c

∗
kα] = 1 and [dkα, d

∗
kα] = 1 (for classical ampli-

tudes), or [ckα, c
†
kα] = h̄ and [dkα, d

†
kα] = h̄ (in the case

of quantum amplitudes when c∗kα → c†kα and analogously
for d−amplitudes). All other Poisson brackets equal zero
identically. Note that the both Hamiltonian and Poisson
brackets are the quadratic expressions in the Fourier am-
plitudes of the free electromagnetic field. Therefore, it
is possible to re-define these amplitudes in the quantum
case (by multiplying them by a factor 1√

h̄
). After such a

re-definition the Poisson brackets between quantum and
classical amplitudes look identically, but the normalized
plane waves take an additional factor

√
h̄, i.e. we must

write now: Akα = e(α) exp(ık · r)
√

h̄c2

2ω . Such a represen-

tation has a number of advantages in applications, since
in this case the operators c†kα and ckα are dimensionless,
i.e. they act on the number of photons (with the two pos-
sible polarizations) in the field (or photon) wave function.
In respect with this, the whole procedure of quantization
of the amplitudes of the Fourier expansion is called the
second quantization.

Finally, the Hamiltonian of the free electromagnetic
field (in this case ckα = dkα) is reduced to the infinite

sum of Hamiltonians of independent harmonic oscillators

H =
∑
kα

1

2
h̄ω
(
c†kαckα + ckαc

†
kα

)
(13)

where for each spatial vector k one finds two independent
harmonic oscillators (for α = +1 and β = −1, or α = 1

and β = 2). Note that the operators c†kα and ckα in the
last equation are dimensionless, i.e. they act on the total
number of photons only. All such transformations are de-
scribed in [15] and here we do not want to repeat them.
Note only that the Hamiltonian approach for the free elec-
tromagnetic field leads to the well known Planck formula
for the thermal energy distribution of electromagnetic ra-
diation. This indicates the correctness of our Hamiltonian
H, Eq.(13), derived above. This Hamiltonian is used to
solve a large number of actual problems, e.g., we apply this
Hamiltonian below to determine the dynamical symmtery
of the free electromagnetic field.

4 On the dynamical symmetry of
the free electromagnetic field

The Hamiltonian of the free electromagnetic field, Eq.(13),
is reduced to the form

H =
∑
kα

h̄ω
(
c†kαckα +

1

2

)
=∑

k

h̄ω(a†1(k)a1(k) + a†2(k)a2(k) + 1)
(14)

where a1(k) = ckα = a1 and a2(k) = ckβ = a2. For any
given k we can write

Hk = h̄ω(a†1a1 + a†2a2 + 1) (15)

An interesting question is to determine the symmetry of
the corresponding Schrödinger equation with the Hamil-
tonian, Eq.(15). To answer this question let us con-

struct the four following operators: Aij = a†iaj which
commute with the Hamiltonian, Eq.(15). The operator

A =
∑
i a
†
iai = 1

h̄ωHk − 1 also commute with Hk. The
commutation relations between Aij operators are:

[Aij , A
k
l ] = δkjA

i
l − δilAkj (16)

These commutation relations coincide with the well known
relations between four generators of the U(2)−group (the
group of unitary 2×2 matrixes). Now, we introduce three
Bij operators defined by the relations Bij = Aij − 1

2δ
i
jA.

Note that for these operators the condition B1
1 + B2

2 = 0
is always obeyed. The three operators Bij are the gener-
ators of the SU(2)-group, i.e. the group of unitary 2 × 2
matrixes and determinants of these matrixes equal unity).
Thus, the group of dynamical symmetry of the free electro-
magnetic field is the three-parameter SU(2)−group. The
physical representations of this group which are only of
interest in applications are D(p, q) = D(n, 0), where p ≥ q
are non-negative integer and n = p+ q. Note that the to-
tal number of parameters in this SU(2)−group coincides
with the total number of Stokes parameters.
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5 Maxwell equations and wave
propagation

In all Sections above we ignored an obvious (or internal)
relation between Maxwell equations and wave propaga-
tion. The nature of this relation directly follows from the
Hamiltonian approach mentioned in Section II. Indeed, we
can write the following expression for the Hamiltonian H
which acts on the wave function of the free electromagnetic
field

H | Ψ〉 =
1

2

∫ [
E2 + (curlA)2

]
d3x | Ψ〉 =

1

2

∫ [ 1

c2

(∂A
∂t

)2

+(curlA)2
]
d3x | Ψ〉

(17)

where it is assumed that φ = 0 and divA = 0 (or
divE = 0) in each spatial point. These two conditions
must be written in the form of the following equations for
the wave function (Ψ) φ | Ψ〉 = 0 and divA | Ψ〉 = 0.
From here one finds

〈Ψ | (δH) | Ψ〉 =∫
(δA)

[
− 1

c2
∂2A

∂t2
− curl(curlA)

]
d3x | Ψ〉

= 〈Ψ |
∫

(δA)
[
− 1

c2
∂2A

∂t2
+ ∆A

]
d3x | Ψ〉 = 0

(18)

This is the energy functional of the free electromagnetic
field H(A).

The condition that the variational derivative δH
δA equals

zero in each spatial point leads to the following equa-
tion (wave equation) for each component of the vector-
potential A:

(
1

c2
∂2A

∂t2
−∆A) | Ψ〉 = 0 ,

or
( 1

c2
∂2A

∂t2
− ∂2A

∂x2
− ∂2A

∂y2
− ∂2A

∂z2

)
| Ψ〉 = 0

(19)

This is the Schrödinger equation of the free electromag-
netic field. Briefly, we can say that the minimum of the
functional H(A) (also called the energy functional of the
free electromagnetic field) uniformly leads to the wave
equations for the vector A and, therefore, for the vectors
of the electric E and magnetic H fields, respectively. The
equation, Eq.(19), can be written in the form of one of the
Maxwell equations:

curlH =
1

c

∂E

∂t
(20)

Another Maxwell equation follows from the definition of
momentum of the free electromagnetic field E = − 1

c
∂A
∂t .

By calculating curl of both sides of this equation one finds

curlE = −1

c

∂H

∂t
(21)

where all these equations must be considered on the wave
functions | Ψ〉 for which the condition (divE) | Ψ〉 = 0
is obeyed in each spatial point. This secondary con-
straint coincides with another Maxwell equation. The last

(fourth) Maxwell equation directly follows from the defini-
tion H = curlA. It should be mentioned that in modern
literature on constraint dynamics the role of constraints is
often considered as relatively minor. For electrodynamics
of the free electromagnetic field it is not true and the con-
straint (divE) | Ψ〉 = 0 allows one to determine many im-
portant features of the propagating electromagnetic field.
This question is discussed in the Appendix. Below, we
briefly consider some special form of Maxwell equations
known as Majorana representation.

6 Majorana representation

Let us discuss another form of Maxwell equations which
has a number of advantages in some applications. In this
form (obtained first by Majorana) the system of Maxwell
equations is represented in the form of Dirac equation(s)
for masseless particle. To simplify our discussion below we
consider the case of the free electromagnetic field. Let us
introduce the two new vectors F = E+ıH and G = E−ıH,
where ı is the imaginary unit, and the gradient vector

p =
(
∂
∂x ,

∂
∂y ,

∂
∂z

)
= ∇. In these notations Maxwell equa-

tions of the free electromagnetic field(s) are written in the
following form

1

c

∂F

∂t
= (s · p)F , p · F = 0 (22)

1

c

∂G

∂t
= (s · p)G , p ·G = 0 (23)

where the vector-matrix s = (sx, sy, sz) = (s1, s2, s3) is
the vector with the three following components (si)kl =
−ıeikl, where eikl is the absolute antisymmetric tensor.
Note that the four Maxwell equations are now reduced to
the two groups of two equations in each and one group
contains only vector F, while another group contains only
vector G. Moreover, each of the equations with the time
derivative is similar to the corresponding Dirac equations
for the spinor wave function. The total equation of the
free electron field is a bi-spinor function, while the to-
tal wave function of the free-electromagnetic field is a bi-
vector function. It is interesting to note that the 3×3
matrixes sx, sy, sz in Eqs.(22) - (23) play the same role
for photons as the Pauli matrixes 1

2σx,
1
2σy,

1
2σz play for

electrons. Therefore, they can be considered as spin ma-
trixes. The commutation rules for the matrixes from
these two groups of generators of transformations are sim-
ilar: sisk − sksi = ıeiklsl and ( 1

2σi)(
1
2σk)− ( 1

2σk)( 1
2σi) =

ıeikl
1
2σl. For electrons the vector with the components

( 1
2σx,

1
2σy,

1
2σz) is the spin vector. Therefore, for the vec-

tor sx, sy, sz is the spin vector of a photon. The Casimir
operator of the second order C2 for this algebra equals 2,
i.e. C2 = s(s+ 1) = 2 and we can say that the spin s of a
single photon equals unity.

The main advantage of such a fomr of Maxwell equa-
tions is very simple and transparent formulas which de-
scribe behavior of the bi-vectors (F,G) under Lorentz
transformations, i.e. under rotations and velocity shifts.
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The explicit formulas take the form

F→
[
1 +

ı

4π
s · δ(~θ)− 1

c
s · δv

]
F (24)

G→
[
1 +

ı

4π
s · δ(~θ)− 1

c
s · δv

]
G (25)

These formulas for the Lorentz transformations of bi-
vectors of the free electromagnetic field are very similar
to the formulas for the Lorentz transformations derived
for the electron wave functions which is a bi-spinor (ξ, η)

ξ →
[
1 +

ı

8π
~σ · δ(~θ)− 1

2c
~σ · δv

]
ξ (26)

η →
[
1 +

ı

8π
~σ · δ(~θ)− 1

2c
~σ · δv

]
η (27)

where 1
2~σ = 1

2 (σx, σy, σz) is the electron spin vector. In
this case the Casimir operator C2 equals 3

4 and the elec-
tron spin equals 1

2 . Here we do not want to discuss other
properties of the Majorana representation [17] of Maxwell
equations. Note only that this representation is very useful
in application to some electromagnetic problems. In the
next Section, we briefly discuss the so-called ‘symmetric
form’ of Maxwell equations.

7 On the symmetric form of
Maxwell equations

The ideas discussed in this Sections were originally stim-
ulated by Dirac’s research on magnetic monopole [18]. It
is a controversial matter which recently attracted a very
substantial attention. Originally, my plan was to extend
and publish this Section as a separate manuscript, but
these days it is really hard to publish a manuscript, if its
subject contradicts foundations of something (e.g., classi-
cal electrodynamics) known to everybody. On the other
hand, our conclusions agree with a number of facts known
from everyday life. Finally, I decided to write the text in
the form which allows readers to make personal decisions
about this subject.

Let us consider the general Maxwell equations for the
classical EM-field (see, e.g., [6])

curlH =
1

c

∂E

∂t
+

4π

c
je , curlE = −1

c

∂H

∂t
(28)

divE = 4πρe , divH = 0

where ρe and je are the electric charge density distribution
and the current of electric charges. Note that in Eq.(28)
the ρe is the true scalar and je is a true vector. The equa-
tions, Eqs.(28) are written in the so-called non-symmetric
form, since they contain, e.g., the electric current je, but
no analogous magnetic current jm. Their ‘manifestly sym-
metric’ form of these equations is

curlH =
1

c

∂E

∂t
+

4π

c
je , curlE = −

1

c

∂H

∂t
+

4π

c
jm

divE = 4πρe , divH = 4πρm

where ρm is the magnetic charge density distribution
(pseudo-sclar) and jm (pseudo-vector) is the current of

magnetic charges. It is clear that the four quantities (ρm
and three components of jm) form the four-vector (or four-
pseudo-vector) which is properly transformed under the
Lorentz transformation. In our ‘real’ world we have no
free magnetic charges. Not even a single stream (or cur-
rent) of magnetic charges was ever observed. On the other
hand, it can be another world where free magnetic charges
and currents of such charges do exist, but the presence of
free electric charges is impossible. It can be shown that
events in these two worlds proceed absolutely independent,
i.e. these events cannot affect each other, since the cross-
sections between events which proceed in these two worlds
are always equal zero. In the lowest order approximation
upon α (the fine structure constant) interaction and/or
communication between these two worlds can be produced
by radiation, i.e. by regular electromagnetic waves.

First, let us find Maxwell equations which govern all
electromagnetic phenomena in that ‘alternative’ (or mag-
netic) world. Assuming the absolute separation of the two
worlds we can write from Eqs.(29)

curlH =
1

c

∂E

∂t
, curlE = −1

c

∂H

∂t
+

4π

c
jm (30)

divE = 0 , divH = 4πρm

In other words, the electric field vector is now solenoidal
(i.e. curlE = 0), while the magnetic field has sources.
Another interesting observation follows from Eqs.(30). If
pseudo-scalar ρm and pseudo-vector jm equal zero iden-
tically, then Eqs.(30) coincide with Maxwell equations
known for the free electromagnetic field. The same equa-
tions are correct in our ‘real’ space. This means that we
can register EM-waves which are coming from that ‘al-
ternative’ world. It works in the opposite way too: they
can observe EM-waves which have been emitted in our
space. Briefly, this means that two our worlds are com-
plement to each other. Furthermore, these two worlds can
be considered as the two separated parts of one United
super-world. It is impotant that our (or real) world and
ghost world can be located at the same place (a local piece
of ‘our’ three-dimensional space) and the ‘door’ between
these two worlds is the reflection in some ‘actual’ mir-
ror. Here by an ‘actual’ mirror I mean a mirror which:
(1) reflects all objects as a regular mirror, and (2) trans-
forms all scalar, vectors and tensors into pseudo-scalars,
pseudo-vectors and pseudo-tensors, respectively. An op-
posite transformation of ‘pseudo-’values into the ‘actual’
values also takes place during such a reflection. The second
point in this definition is crucial, since currently the word
‘reflection’ in physics is overloaded with different mean-
ings.

As mentioned above the electric and magnetic worlds
which are complement to each other. In general, these two
worlds can be considered as the two independent compo-
nents of one united super-space of events, or Super-World.
This is of great interest for a large number of applica-
tions. For instance, for theology this means that the life
and death are the two complementary forms of one super-
life (or super-existence) and transformation between these
two form is the reflection in the ‘actual’ miror as defined
above. Remarkably, that all facts known from the ‘old’ re-
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ligous points of view, e.g., ‘spiritual transitions from life to
death and vise versa, i.e. from death to life’, ‘spirit risen
from the death’, etc are supported by Maxwell equations
in their symmetric form and can formally be described
by these equations. The question about observation and
registration of radiation which comes from the ‘magnetic’
world (or ‘ghost’ world) is very interesting. However, here
one finds two questions which must be answered before
such observations will be possible. First, right now we
know almost nothing about frequencies and amplitudes of
radiation which arives into our world from its ‘magnetic’
counterpart. Very likeley, it has relatively low frequencies
and small amplitudes. Second, we do not know the exact
moment when any pulse of radiation will be emitted in
the magnetic world. Therefore, it is hard to predict the
moment of registration and the corresponding frequencies.
Probably, a few ‘gifted’ people can see such a radiation and
respond to it, but any systematical, experimental study of
radiation ariving from the magnetic world into our elec-
tric world is an extremely complex process. Despite a large
number of unanswered questions at this moment we can
only predict that old-fashioned Maxwell equations (with-
out any modification) are the appropriate, accurate and
sufficient ‘tool’ to provide communications between our
real world and the ‘ghost’ world.

8 On scalar electrodynamics

As is well known the equations of electromagnetic field(s),
or Maxwell equations, contain one polar vector E and one
axial vector H. All components of these two vectors are
unknown functions of the spatial coordinates r and time
t. From here one can conclude that an arbitrary elec-
tromagnetic field always has six independent (unknown)
components which are the scalar components of these two
vectors. However, this conclusion is not correct, since by
using formulas known for the Lorentz transofrmations be-
tween two different inertial systems we can reduce the to-
tal number of independent components to four. It is clear
that a possibility of such a reduction is closely related to
the well known fact that there are two independent field
invariants E2−H2 (scalar, which up to the constant is the
Lagrangian (or Lagrangian density) of the electromagnetic
field) and E ·H (pseudoscalar). This allows us to intro-
duce the four-vector of field potentials (Φ,A) and re-write
all Maxwell equations in terms of φ and A. In the general
form these equations are (in regular units):

4π

c
ρv =

1

c2
∂2A

∂t2
−∇2A + grad

(
divA +

1

c

∂Φ

∂t

)
(31)

4πρ = −∇2Φ− 1

c

∂

∂t
(divA) (32)

where the second equation can be re-written to the form

4πρ =
1

c2
∂2Φ

∂t2
−∇2Φ− 1

c

∂

∂t

(
divA +

1

c

∂Φ

∂t

)
(33)

The vector A is defined by the differential equation
curlA = H. It follows from here that the vector A is
defined up to a gradient of some scalar function, i.e. our

equations must be invariant during the transformation:
A′ → A+∇Ψ. The choice of this function (Ψ) can be used
to simplify the both equations, Eqs.(31) and (33). This is
very well known gauge invariance (or gauge freedom) of
the Maxwell equations. It is well described in numerous
books on classical electrodynamics (see, e.g., [6] and [10]).
A freedom to chose different gauges is often used to solve
actual problems in electrodynamics. Here we do not want
to discuss it. Instead let us consider a slightly different
approach which can be very effective for many complex
problems in electrodynamics. This approach is called the
‘scalar electrodynamics’.

By analyzing equations Eqs.(31) - (33) one finds that to
solve these equations we need to determine the four scalar
functions, e.g., the scalar potential Φ and three compo-
nents of the vector-potential A = (Ax, Ay, Az), or their
linear combinations. This approach is absolutely equiv-
alent to the use of one four-vector (Φ,A), but the use
of non-covariant notations instead of one four-vector does
not lead to any simplification in the general case. However,
there is another approach which is based on the following
theorem from Vector Calculus [14]. An arbitrary vector a
is uniformly represented in the form

a = φ · gradψ + gradχ = φ∇ψ +∇χ (34)

where φ, ψ, χ are the three scalar functions which depend
upon three spatial coordinates r and time t. The proof
of this theorem is relatively simple (see, e.g., [14]) and it
leads to the following identity: curla = gradφ× gradψ =
∇φ × ∇ψ. The expression for the diva = ∇a is slightly
more complex: diva = gradφ · gradψ + φ∆ψ + ∆χ =
∇φ · ∇ψ + φ∆ψ + ∆χ. If we can chose the functions
ψ and χ as the solutions of the Laplace equations, i.e.
∆ψ = 0 and ∆χ = 0 (i.e. these two functions are the har-
monic functions), then from the last equation one finds
diva = gradφ · gradψ = ∇φ · ∇ψ. In classical electro-
dynamics we can always represent the vector-potential A
in the form of Eq.(34). Then the solution of the incident
problem is reduced to the derivation of the correspond-
ing equations for the three scalars φ, ψ, χ in Eq.(34) and
scalar-potential Φ form the four-vector (Φ,A). An obvious
advantage of this method follows from the fact that we can
chose three functions φ, ψ, χ step-by-step and by using the
known boundary and initial conditions. For many prob-
lems it provides crucial simplifications of arising equations
and allows one to find the explicit solutions. However, in
this approach Maxwell equations become a system of the
non-linear equations. For theoretical development of the
classical/quantum electrodynamics this approach (based
on Eq.(34)) has never been used.

9 Conclusion

Thus, we have applied the methods of constraint dynamics
developed by Dirac [8], [9] to derive the Hamiltonian of the
free electromagnetic field. This Hamiltonain and arising
primary and secondary constraints are used to derive the
corresponding Schrödinger equation for the free electro-
magnetic field. One of the advantages of this method is the
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absence of any scalar and/or longitudinal photons. Both
scalar and longitudinal photons arise in standard QED,
since without them this theory cannot be considered as
being a closed, relativistic procedure. However, the pres-
ence of such photons in the expression for the electric and
magnetic fields makes all QED calculations extremely diffi-
cult. Furthermore, initially in QED the physical (or inter-
nal) reasons for the appearance of scalar and longitudinal
photons was not clear. Fermi proposed to exclude all such
‘non-physical’ photons by using re-definition of the field
wave functions [16]. At the same time a number of other
ideas and recipes were proposed which lead to complete
exclusion of the scalar and/or longitudinal photons from
QED calculations. Only after development of the con-
strained dynamics by Dirac it became clear that the orig-
inal Fermi’s idea is essentially correct. Based on Dirac’s
methods we have develop a new approach to perform QED
calculations which are correct at each step. This approach
will be described elsewhere.

We also briefly discuss questions related with the dy-
namical symmetry of the free electromagnetic field, Ma-
jorana form of the Maxwell equations, communications
between our (electric) and ghost (or magnetic) worlds and
sclalar approach to electrodynamics which is based on the
use of four scalar functions only. It should be mentioned
that Maxwell theory of electromagnetic equations is one of
the oldest (150 years old!) physical theories which is still
in active use in many areas of modern science and technol-
ogy. Nevertheless we are still far away from that moment
when we can say that we know everything about Maxwell
equations and predictions which follow from these equa-
tions at different experimental conditions. This indicates
clearly that Maxwell theory of electromagnetic filed(s) is
healthy and it is still a subject of intense theoretical and
experimnetal development.

Appendix.

Here we discuss the role of the secondary constraint
divE = 0 in Dirac’s electrodynamics. Recently, in many
books and textbooks it became a tradition to consider
all primary and secondary constraints for the free electro-
magnetic field as some secondary conditions which play
a non-significant role (in contrast with the Hamiltonian
equations) for the field itself. From my point such a view
is absolutely wrong and may lead to serious mistakes, if
it applies to other fields. Even for the free electromag-
netic field the constraint divE = 0 allows one to predict
many important details of its propagations. Let us dis-
cuss this problem here. First, note that the constraint
divE | Ψ〉 = 0 exactly coincides with one of the field equa-
tions (or Maxwell equations). There is no easy way to
derive this equation by using the Hamiltonian of the free
electromagnetic field. This condition means that no new
(non-zero) electric charge can be created during any pos-
sible time-evolution of the free electromagnetic field in our
three-dimensional space. In addition to this, the condition
divE | Ψ〉 = 0 substantially determines the actual shape
and time-evolution of the free electromagnetic field. In-
deed, let us consider the formula for the divergence of the

vector E in spherical coordinates (r, θ, φ) is

divE =
1

r2

∂(r2Er)

∂r
+

1

r sin θ

∂(sin θEθ)

∂θ
+

1

r sin θ

∂(sin θEφ)

∂φ
= 0

(35)

where Er, Eθ and Eφ are the spherical components of the
E vector (the vector of the electric field intensity). Let
us discuss possible choices of the spherical components of
the vector E = (Er, Eθ, Eφ) which will automatically lead
to the identity divE = 0. To obey the condition, Eq.(35),
the radial component Er of the vector E must be a very
special function of r. The dependence of the Er compo-
nent upon r is general and it is crucially important for the
whole electrodynamics in three-dimensional space. From

the condition ∂(r2Er)
∂r = 0 one finds that at large r the elec-

tric field intensity E decreases as r−2, i.e. Er ' C
r2 , where

C is some numerical constant. It can be shown that the
same conclusion is true for the magnetic field intensity H.
Such a radial dependence at large r is the known general
property of the free electromagnetic field which propagates
in three-dimensional space. Analogous conclusion about
angular dependence of the Eθ and Eφ components (e.g.

Eθ = F (r,φ)
sin θ and Eφ = G(r, θ), where F and G are the

arbitrary (regular) functions of two arguments) cannot be
considered as universal and general.
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