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Abstract— In this paper, we use the vector 
representation of quaternions in order to obtain 
simplified forms of the solutions of the 

quaternionic equation 
2 0x bx c    with b,c  

H. Similarly, we conclude that the equation 
2 0x xab bax    with a,bH and 

0 0,a a a b b b     has the unique solution x=0, 

except the case 0 0( , ) (0,0)a b   and 0,a b   

where it has an infinite number of solutions 
1 *( ) ( ) , .x a b q a b q q H       

Keywords— Quaternions 

I. Introduction 

The set H of quaternions is the vector space R
4

 
with component-wise addition and scalar 
multiplication. We denote the canonical basis 
elements by 

1 (1,0,0,0), (0,0,1,0), (0,0,0,1).i k    

Thus, the general quaternion has the form 

( , , , ) 1

, , , , .

q i j k

a i j R

       

      

     

   
 

Hamilton in [1] was the first who defined 
multiplication on H by using the relations 

2 2 2 1.i j k ijk      

The set H of quaternions is a skew-field and an 
associative division algebra with unit. The general 

quaternion q=(,,,)=+i+j+k, can be 

represented as a pair ( , ),q a u  where R, 
3( , , ) .u R     This representation simplifies the 

formula of multiplication. In fact, by using vector 
products for the arbitrary quaternions 

1 0 1 2 3 0

2 0 1 2 3 0

( , ),

( , ),

q a a i a j a k a u

q i j k v    

    

    
 

we have the following relation: 

1 2 0 0 0 0 0 0( , )( , ) ( , ).q q a u v a u v u a u u v        

For 1 0 1 2 3 0( , )q a a i a j a k a u     we define its 

conjugate by 

1 0 1 2 3 0( , ),q a a i a j a k a u       

its real part by 1 1 2 0

1
Re ( ) ,

2
q q q a    

its imaginary part by Imq
1
=q

1
Req

1
=u and its 

norm or modulus by 

2 2 2 2

1 1 1 0 1 2 3|| || .q q q a a a a      

The inverse of q
1
 exists when ||q

1
||0 and it is 

equal to 
1

12

1

1
.

|| ||
q q

q

  We say that 1 2,q q  H are 

similar if there exists an invertible qH such that 

q
1
=q1q

2
q or equivalently, if Req

1
=Req

2
 and 

1 2|| || || ||,q q [2]. 

We consider the monic quadratic polynomial 
equation 

2 0,x bx c    (1.1) 

where b, c H. It is equivalent to a real system of 

four nonlinear equations. 

Zang and Mu [3] worked on quadratic equation 
(1.1) and tried to compute some roots by solving a 
real linear system. They did not give a complete 
solution of (1.1). Poter [4] reduced the problem of 
solving equation (1.1) to the problem of solving a 
linear polynomial equation of the form px+xq+r=0, 
provided that a root of (1.1) is given. Niven [5] 
determined the number of roots of equation (1.1), but 
he did not give any formula for the computation of the 
roots. Finally, Huang and So [6] used an algebraic 
approach to solve equation (1.1) or equivalently the 
nonlinear system. 

In this paper we use the vector representation of 
quaternions in order to give simplified explicit formulas 
for the roots of the quadratic equation (1.1). 

II. The equation 

2 0,x bx c    ,b c H. We use the 

transformation 
2

b
x X   in order to obtain the 

equivalent equation 

2 0,X aX Xa b     (2.1) 

http://www.jmest.org/
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where 
2

b
a   and 

2 24
.

4 4

b c b
c


    Since, 

Re Ima a a   and (Re ) (Re )a X X a  equation 

(2.1) is equivalent to the equation 

2 0,X aX Xa      (2.2) 

where Im
2

b
a  with Re 0a  and 

24
.

4

c b



  

Let X=X
0
+w where X

0
R and 

1 2 3 1 2 3( , , ) ,w X X X X i X j X k     

31 2( , , )
2 2 2

bb b
a u   and 0 .v    Then we 

have the following: 

22 2

0 02 ,X X w X w    

0 ,aX uw X u u w      

0Xa uw X u u w      

and equation (2.2) becomes 

22

0 0 0( ) 2 2( ) 0.X w X w u w v        (2.3) 

Equivalently, we have the equations 

22

0 0 0,X w     (2.4) 

02 2( ) 0.X w u w v     (2.5) 

We now distinguish the following cases: 

1. ,u v are collinear, i.e. uv=0 .a a  In this 

case, we consider two different subcases. 

(a) v=0 and u arbitrary. Then the equation 

(2.5) becomes 0 0X w u w    and gives 

2

0 ( ) 0X w u w w    or
2

0 00 0X w X    or 

0.w   If 0 0,X  then from equation (2.4) we get 

2

0 1 2 3( , , ),w w X X X    with 

2 2 2

1 2 3 0 ,X X X     provided that 0 0.  If 

0,w   then equation (2.5) becomes 

2

0 0 0 0 0, 0.X X          

(b) , , 0.u v R v     

We observe that it is impossible to have a solution 

with 0 0.X  In fact, if 0 0,X  then the equation (2.5) 

becomes 2 ( ) 0,v w v     which gives 

2
2 ( ) 0v w v v     or v=0, (absurd). Thus, we look 

for solutions 0X X w   with 0 0.X  From 

equation (2.5), we derive a pair of equations 

2

02 0,X w v w    (2.6) 

2

02 0,X w v v    (2.7) 

from which, using equation (2.4), we conclude that 
X

0
 is a root of the biquadratic equation 

24 2

0 0 04 0.X X v    (2.8) 

Hence, we have the following solutions 

22

0 0

0 .
2

v
X

   
   

Moreover, from equation (2.5), we get 

 
2

02 ( ) 2 [ ( ) ] 0,X w v v w w v v      

from which by using equations 

02 2 ( ) 0X w v w v     and (2.7), in either 

case 0  or 0,   we obtain 

0

1
.

2
w v

X
   

Hence, we have two solutions 

0

0

1
,

2
X X v

X
   where we have that 

22

0 0

0 .
2

v
X

   
   

2. ,u v are not collinear, i.e. uv0 .a a   

In this case, we consider two different subcases. 

(a) If 0 0,X   then the equations (2.4) and (2.5) 

give the system 

2

0w   (2.9) 

1
,

2
v w v    (2.10) 

which is compatible when 0 0   and uv=0. 

Since ,u w  and u v  are coplanar, w  can be written 

as 

( ),w u u v     , R   

and it must satisfy equations (2.9) and (2.10). 
Thus, from equation (2.10), we find that 

http://www.jmest.org/
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2

1
( ),

2
w u u v R

u
      

and from equation (2.9), we find that 

2 2

0

2

4
,

2

u v

u





   provided that 

2 2

04 0.u v    

(b) If 0 0,X   then the equation (2.5), gives 

0

0

2 ( ) 0 .
2

v u
X w u v u w u

X


         (2.11) 

Moreover, from some equation, we get 

22

0 02( ) 2( ) .X u w w u u X u v u       

By using (2.11), we finally find 

2

0 022

0 0

1
[( ) ( )].

2 ( )
w v u u X v X v u

X X u
     


(2.12) 

It is to verify that w given by (2.12), is a solution of the 
equation (2.5). Moreover, this is the unique solution of 
equation (2.5). In fact, if we suppose that there exists 

a second solution 1 ,w w  then from equations 

2X
0
w

1
+2(uw

1
)+v=0 

2X
0
w+2(uw)+v=0 

by subtraction, we obtain 

2X
0
(w

1
w)2=0  or  w

1
=w. 

Moreover, from equations (2.4) and (2.5), we 
obtain 

2 2

0 0 0 02 2 ( ).v w X w X X        (2.13) 

Also, from equation (2.12), we obtain 

22 2

0

22

0 0

( )
.

2 ( )

u v X v
v w

X X u

 
  


 (2.14) 

Thus, from (2.13) and (2.14), we find that 
2

0X  

must satisfy the equation 

26 4

0 0 0

2 2 2 2

0 0

4 4( )

(4 ) ( ) 0.

X u X

u v X v u





  

   
 (2.15) 

Putting 
2

0X Y , we have that Y must be a 

positive root of the equation ( ) 0f Y  , where 

23 2

0

2 2 2

0

( ) 4 4( )

(4 ) ( ) 0.

f Y Y u Y

u v Y v u





   

    
 

Since f(0)=(uv)2<0 and lim ( )Y f Y    

we conclude that the polynomial f(Y) has at least one 
positive root. Moreover, looking at the sequence of 
coefficients 

2( ) 0,u v    
2 2

04 ,u v   
2

04( ),u   4 0,  

we observe that we can have only one change of 
sign of the coefficients. It is due to that the system 

2 2

04 0,u v    
2

04( ) 0,u    

is impossible. Therefore, according to the Harriot-
Descartes rule [7], the polynomial f(Y) has exactly one 
positive root. Thus, we have proved the following 

Theorem 2.1 Let 

2 0,X aX Xa      (2.16) 

be a quadratic equation with ,   H and 

Re 0.a  Let also 0 ,X X w   a u  and 

0 ,v    where 0 0,X R   and 
3, , .w u v R

Then we distinguish the following cases: 

1. Let ,u v  are collinear (i.e. 

0 ).u v a a      

(a) We have the subcases: 

i. if 0v  and 0 0,  then 
0X     (two 

solutions ) 

ii. if 0v   and 0 0,   then 0X  (one 

solution) 

iii. if 0v   and 0 0,  then ,X w with 

2

0w  (infinite solutions). 

(b) If ,u v  R  and 0,v   then 

0

0

1
,

2
X X v

X
   where 

2

0X  is the positive root of 

the equation 
24 2

0 0 04 4 0,X X v    

i.e. 

22

0 0

0
2

v
X

   
   (two solutions). 

2. Let ,u v  be non collinear (i.e. 

0u v a a     ). Then the equation (2.16) has 

a unique solution 0 ,X X w   with 0 0X  and 

2

0 022

0 0

1
[( ) ( )],

2 ( )
w u v u X v X v u

X X u
     



where 
2

0X  is the unique positive root of the 

polynomial equation 

http://www.jmest.org/
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2 2 26 4 2 2

0 0 0 0 04 4( ) (4 ) ( ) 0.X u X u v X u v       

Moreover, when 0u v   and 
2 2

04 0,u v    then 

the equation (2.16) has one or two pure imaginary 
solutions: 

2

1
( ),

2
X u u v

u
    where we have that 

 

2 2

0

2

4
.

2

u v

u





   

III. The equation 

2 0, ,x xab bax a b    H. We consider the 

quaternionic equation 

2 0, ,x xab bax a b    H, (3.1) 

arising in the study of the spectrum of 

22quaternionic matrices [8]. We use the vector 

representation of quaternions in order to determine 
the explicit solutions of the equation (3.1). 

Since we have that Re( ) Re( )ab ba  and 

Re( ) Re( ) ,x ab ba x without loss of generality we 

suppose that Re( ) Re( ) 0.ab ba   

Let 

0 0 0 0 1 2 3, , ( , , ).a a a b b b x x w x x x x       

Then equation (3.1), is equivalent to the system 

22

0 2 ( ) 0,x w w a b      (3.2) 

2

0 0 0 0( ) ( ) 0.x w x a b w a b b a       (3.3) 

We distinguish the following cases: 

1. Let 0 0( , ) (0,0).a b   We have the subcases: 

(a) If 0 0,x  then from (3.3), we get that 

0 0( ),w a b b a R     and from equation (3.2), we 

conclude that 0.w   

(b) If 0 0,x  then considering the scalar product of 

both parts of (3.3) succesively by w  and ,a b  we 

derive the equations 

2
( ) 0,w w a b     (3.4) 

2( ) ( ) 0,w a b a b      (3.5) 

from which by addition we find (w+ab)
2
=0 or 

w=ab It is easy to prove that w a b    is the 

unique solution of (3.3). However, from (3.2), we have 

22

0 2 ( ) 0x w w a b      or 
2 2( ) 0,x a b    

which is impossible for 0 0.x  Therefore, for 

0 0( , ) (0,0)a b  we have the unique solution 0.x   

2. Let 0 0( , ) (0,0).a b   Then we have two 

subcases: 

(a) If 0 0x  , then equation (3.2) gives 

2
2 ( ) 0w w a b     or 

2 2( ) ( ) .w a b a b     

Thus, we have || || || ||w a b a b     and since 

Re( ) Re( )w a b a b    we conclude that 

w a b   is similar to ,a b  that is 

1( ) 0,w a b q a b q q        H
*
. (3.6) 

Therefore, when 0,a b   equation (3.1) has an 

infinity of solutions given by (3.6). When 0,a b 

equation (3.1) has the unique solution 0.x   

(b) If 0 0,x   then from equation (3.3), we find 

.w a b    However, from equation (3.2), we have 

2 2

0 ( ) 0,x a b    which is impossible. 

Thus, we have the following 

Theorem 3.1. Let 

2 0,x xab bax    (3.7) 

where 0 0 0, , ,x x w a a a b b b       with 

0 0 .a b a b   Then we have the following cases: 

1. When 0 0( , ) (0,0),a b   or 0 0( , ) (0,0)a b   and 

0,a b   then equation (3.7) has the unique solution 

0.x   

2. When 0 0( , ) (0,0),a b   and 0,a b   then 

equation (3.7) has an infinite numbers of solutions 
1( ) ,x a b q a b q      q H

*
. 
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