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     Abstract— Quantum computing research has 
gained a lot of momentum recently due to several 
theoretical analyses that indicate that quantum 
computer would be more efficient at solving 
certain classes of problems than classical 
computer. Quantum computer works according to 
quantum mechanical laws and with it some 
problem exists, namely, these laws would restrict 
the time when a computer ends the calculation. 
We have discussed the Feynman serial model of 
quantum calculation in which we have found the 
time in which complete calculations could be 
defined for a half adder. 
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I.  INTRODUCTION  

This Richard Feynman discussed in the early 1980’s 
[1] that certain quantum mechanical effects cannot be 
simulated efficiently on a classical computer. This led 
to idea that perhaps quantum computation could be 
done more efficiently by quantum computers. In 1994 
Peter Shor surprised the world by describing 
a polynomial time quantum algorithm for factoring 
integers [2]. His discovery enhanced the activity both 
among experimentalists trying to build quantum 
computers and theoreticians trying to find better 
quantum algorithms. 
    In 1985 Richard Feynman [3, 4] presented also 
a model of quantum computation which was quantum 
mechanically plausible. The Feynman computer is an 
ideal quantum computer based on the quantum 
mechanical law which does calculations. Some 
problem was related to uncertainty of time in which 
calculation will be completed. Feynman has written 
that we have quantum computer for making 
calculation, but time of arrival of the cursor and 
measurement of the output register (in other words, 
the time it takes in which to complete the calculation) 
has undefined time. It is a question of probabilities, 
and so there is a considerable uncertainty according 
to his view at what time a calculation will be done. 
    In this paper we have discussed the Feynman 
model for an adder (a half adder) where the 
calculation could be completed at the definite time. 
This allowed us to estimate a calculation speed in a 
quantum computer base on the Feynman quantum 
mechanical model of computer.  

II. CALCULATION DETAILS 

First, Feynman considered how a quantum computer 
can be built using the laws of quantum mechanics [3]. 
It is important to have a Hamiltonian which will 
describe all the internal computing actions. The 
quantum computer would be small, for example, it 
could be composed from atoms or ions. A quantum 
computation works as follows: we propose quantum 
register with qubits in a known state, we apply 
quantum gates on the register, i.e. we apply unitary 
operations on some qubits and we measure the final 
state of the register to read its content.  
    All elements in quantum computers could be built 
as a combination of primitive elements, namely  NOT, 
CNOT, and CCNOT elements [4]. The Controlled Not 
element (CNOT) has two entering lines (in a diagram 
model), a and b and two exiting lines a’ and b’. The a’ 
is always the same as a, which is the control line. If 
the control is activated  (a = 1) then the output b’ is the 
NOT of b. Otherwise b is unchanged, b = b’. The 
Controlled Controlled Not element (CCNOT) involves 
three lines. We have two control lines a, b which 
appear unchanged in the output and which change 
the third lines to NOT c only if both lines are activated 
(a = 1 and b = 1), otherwise c’ = c.   
    We can make an adder by using CNOT and 
CCNOT elements to produce the sum on the second 
atom and carry on the third as it is shown in Figure 1. 
It means the adder represents the simplest computer 
which makes a calculation. 
 

 
 

Fig.1. The diagram representation of an half adder. 
 

    The adder is composed from two logical blocks 0A

(CCNOT) and 1A (CNOT). There exists a matrix M 

which consists of a sequence of matrices 0A , 1A , 

where 01AAM  . The matrix M can easily be seen 

as the result of two successive primitive operations 

0A  and 1A  where [3] 
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baAA ,1  , 

cabAA ,0                                                 (1)                                      

and 

    )1(1,   bbaaA ba
,                                         (2)                                                                                 

   )1(1,   ccbabaA cab
.                                     (3)         

                     
We use an operator representation of the gates by of 

creation a  and annihilation 
a operators. The atoms 

indexed a, b, c create a register. We add next new set 
three atoms indexed by 0, 1, 2 which we will call 

program counter (PC). Let us call iq  and 


iq  the 

annihilation and creation operators for the PC. If the 
atom or ion of PC is occupied by as cursor (it could be 
for example an electron), we write the Hamiltonian of 
the adder as 

       112001112001 AqqAqqAqqAqqH .              (4)                 

 
This is the Feynman version of quantum computer [3]. 
We put at time t = 0 the cursor on the atom 0. The 

term 01 qq
 is a term which simple moves the occupied 

site from the location 0 to the location 1. The matrix 

then 0A  multiplies the initial state of the three register 

atoms. If the Hamiltonian begins to operate the 
second time, this first term will produce nothing 

because 0q  produces nothing on the number 0 site 

(the site 0 is now unoccupied). The term which can 

operate now is the term 112 Aqq
. The cursor can 

move from site 1 to site 2 but the matrix 1A  now 

operates on the register. If we check the cursor at site 
2, we remove the cursor and we now know that the 
register contains the output data, the calculation is 
completed.  
    In which time the cursor will be at the end of the 
program line at site 2? According the quantum 
mechanical laws there exists an probability amplitude 
to be at site 2 for the time t > 0. The probability 
amplitude  )(|2 t  that cursor will be at the time 

t > 0 on the site 2, if it is at the site 0 at t = 0, can be 
expressed as follows (it is true when the Hamiltonian 
of the quantum computer does not depend on the 
time) 
      )(|2)(|2 tbt 



                                (5) 

We can use a standard procedure for the solution of 
the problem to find the probability amplitude. If we 
take the Hamiltonian matrix as H00 = H11 = H22 = 0, 
H01 = H10 = A =−|A|,H02 = H20 = 0, H12 = H21 = A (a tight 
binding approximation) we get the following 
expression 
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The probability that the cursor is found in state |2> 
varies harmonically with time. There exists a minimal 
time in which the cursor is found in the state |2>, and 

this time can be determined from the equation 

1)(2 TP . It follows 

    
||2 A

T


 .                                                           (7)           

 
For the half adder it need not check at the site, say, by 
scattering electrons, that the site is empty, or that the 
site 2 has a cursor. We can select the measurement 
time in which the calculation is completed. 

III. RESULTS AND DISCUSSION 

At the minimum time, in principle, we can take the 
values of bits from the output registry. For typical 
value of A the order 0.1 electron volts we can evaluate 
the time T of the complete calculation of the half 

adder. We get the value 1.46 x 
1510

second. This 

represents an improvement over the present values of 
the time delays in classical transistors by a factor 

410x .  

    However, currently, we have to change an idea 
about the time for which quantum computer will do 
some calculation. This relates to the physical 
implementation of the computer. In recent years, have 
been successfully implemented elements that 
compose the quantum computers. For example, 
CNOT element as it is written in Blatt et al. [5], was 
implemented by ions in the linear trap, where ions are 
controlled by laser pulses. The CNOT gate operation 
[6] was realized with the following sequence of laser 
pulses: 
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 All qubit transitions are described as rotations on 
corresponding Bloch sphere and they are written as 
unitary operation R(θ, Φ), R

-
 (θ, Φ), R

+
 (θ, Φ) on the 

carrier, red sideband and blue sideband, respectively. 
Typical pulse duration for π-pulse ranges from 1 to 
several 10 μs for the carrier transition and 50-200 μs 
on the sideband transition. By concatenating pulses 
on the carrier and sidebands whole quantum 
algorithm can be implemented [7]. 
    This means that the computation time can be of the 
order of a millisecond, when the quantum computers 
uses technology ions trapped in the linear trap. 
Quantum computer will not do the calculation with 
high speed. However, if we can insert into the trap of 
many qubits, we expect, that although the calculation 
will take a relatively long period of time, for certain 
types of tasks will calculate the effective compared 
with classical algorithms [8]. 
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