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Abstract—With due account for diffraction, the 
problem of modeling of an anisotropic rectangular 
waveguide partially embedded in an anisotropic 
substrate is being considered in this paper. There 
have been conducted numerical calculations of 
the characteristic equations obtained for 
anisotropic waveguide with a uniform 
environment and for anisotropic strip waveguide, 
which were investigated experimentally in the 
microwave range. A comparison of theoretical and 
experimental data shows that the single-wave 
approximation sufficiently accurately describes 
the basic types of rectangular waveguides. 
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range; anisotropic waveguide; electromagnetic 
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I. INTRODUCTION 

Study of the propagation of electromagnetic waves 
along rectangular anisotropic waveguides has a great 
scientific and practical interest. This is primarily due to 
the fact that such waveguides may serve not only for 
limiting and direction of the electromagnetic signal but 
also are the basis of the various telecommunication 
devices. It should be noted that a rigorous theory of 
rectangular waveguides is far from completion. 
Existing methods of calculation can be divided into 
numerical and analytical [1-3]. Computational 
methods are generally applicable to waveguides with 
small differential dielectric permittivity [3] or 
surrounded by a homogeneous medium. Of greatest 
interest are approximate methods as they are 
applicable to a wider range of tasks. It should be 
noted that the approximate methods of analysis [5-9] 
do not give a complete solution of the boundary 
problem but they are distinguished by the simplicity of 
the final results. So, constant spread of modes is 
determined from characteristic equations for two 
planar waveguides. At the same time, various 
methods differ only in the choice of the refractive 
indices of these waveguides. To get a complete 
picture of the field distribution in a rectangular 
waveguide it is necessary to consider the diffraction of 
waves on the faces of the waveguide. 

 

II. PROBLEM FORMULATION 

In this paper, approximately, but with due account 
of diffraction the problem of modeling of an anisotropic 
rectangular waveguide partially embedded in an 
anisotropic substrate is being considered. The 
problem is solved by the method of partial areas in the 
single-wave approximation the essence of which is as 
follows. The field in the central part of the waveguide 
appears to be the mode of a flat waveguide 
experiencing reflections from the side faces of the 
rectangular rod. When interacting with the lateral 
faces it is assumed that mode is reflected primarily in 
itself, that is, an inevitable process of transformation in 
the process of reflection of the incident wave into 
other types of vibrations is not being taken into 
consideration. In contrast to [4-9] field, systems of two 
media separated by a plane boundary are located in 
the lateral partial areas, either in the form of integrals 
over plane waves, or in the form of integrals over its 
own types of waves. 

Approximate matching of fields at the boundaries 
of partial regions leads to the determination of the 
amplitude expansion and dispersion equation for the 
propagation constant, which determines the 
distribution of the field in the entire space. 

III. DEVELOPMENT OF MATHEMATICAL 
MODELS 

The main interest is the solution of this problem for 
an arbitrary orientation of the principal axes of the 
dielectric tensor with respect to the chosen coordinate 
system. However, the solution of this problem is very 
difficult. We therefore confine ourselves to the special 
case when the anisotropic waveguide has a dielectric 
permittivity tensor of a diagonal form, in which the two 
elements are equal to: 
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We assume that the tensor of dielectric permittivity 
substrate has a similar form: 
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We choose a Cartesian coordinate system in such 
a way that the axis of the waveguide coincides with 
the coordinate axis Oz, and the region in the 
transverse plane occupied by the rod is defined by the 

inequality ,bx  ay   (Fig.1). We assume that the 

waveguide is embedded into the substrate by an 

amount 0( ).a y  

 

Fig.1. A rectangular waveguide partially embedded 
in the substrate 

We also assume that the medium above the 
waveguide and the substrate is an isotropic dielectric 

with dielectric permittivity of .с  It should be noted 

that the problem in this formulation cannot be solved 
by known methods [5-9]. This problem is solved by 
the method of partial areas in the single-wave 
approximation. 

Let’s divide the plane of the cross section into 
three partial areas. Region I is bounded by the 

planes bx  , regions II and III, are set by the 

inequalities bx   and bx   respectively. As 

before, the solution of Maxwell's equations is sought 
in the form of harmonic waves [10-12] traveling along 
the axis of the waveguide. 

( , )exp( ),

( , )exp( ).

E E x y ihz i f

H H x y ihz i f





 


 

  (3) 

In this case, the transverse component fields at all 
points of the system, except for the interfaces of 
media, are expressed by differentiating through 

longitudinal 
zE  and 

zH . Let’s find the distribution of 

the field in the areas I—III. Because of the symmetry 

of the system with respect to the plane 0x   there is 

a possibility of the existence of two independent 
groups of waves with different parity by x . 

As before, we neglect the process of 
transformation of waves being reflected on the faces 

,bx   that is, the field in a partial region I we will 

approximately assume as one mode of a flat 
anisotropic waveguide on an anisotropic substrate. 

Boundary conditions at ay   are satisfied by two 

types of independent waves with different polarization. 

For the first type, which is determined by the 

condition 0yE , the expressions for the longitudinal 

components in the area I are in the form 
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and the wave number 0 0 2, ,u v q  and 3q are 

associated with 0h  by the expressions 
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which are usual equations for the propagation 
constants of uniaxial crystals and the corresponding 

ordinary waves. Upon that, 20 ,q  and 3q satisfy the 

equation 

)/()()2( 32
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which is similar to the characteristic equation for 
the ordinary waves of a flat anisotropic waveguide on 
an anisotropic substrate. 

For the second type of waves with polarization 

0yH  in the region we will have 
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and the wave numbers 2, ,e eu q   and 3q  are 

associated with eh  by the expressions 
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corresponding to the extraordinary waves. Upon 

that, 2 , qe
  and 3q  satisfy the equation 
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which is similar to the characteristic equation for 
the extraordinary waves of a flat anisotropic 
waveguide on an anisotropic substrate. 
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Thus, the waves (4) correspond to the ordinary 

waves ),0( yE  and (9) – to the extraordinary waves 

( 0)yH  of an anisotropic rectangular dielectric 

waveguide. 

In the outer regions II )( bx  and III )( bx   

let’s assume fields in the form of a superposition of 
waves of a system consisting of two media, one of 

which has a dielectric permittivity с , and the second 

is characterized by a dielectric permittivity tensor (2) 

separated by flat boundary 0yy   (Fig. 1). 

For ordinary waves with polarization 0yE , we 

have (the upper sign corresponds to the region 

bx  , while the lower to the region bx  ): 
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Upon that wave numbers 12121  ,,,,   and 

2  are associated with each other by expressions 
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and the cross-section functions ),( 11 yF   and 

),( 22 yF   are orthogonal and satisfy the 

normalization condition: 
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For extraordinary waves with polarization 0yH  

expressions for the longitudinal component fields are 
similar: 
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Upon that parameters 12121  ,,,,   and 2  

are associated with each other by expressions 
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functions are orthogonal and satisfy the 
normalization condition 
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In expressions (17) the lower sign corresponds to 
region II, and the upper to region III. 

Upon that, if ec eee  0  (Medium in regions II 

and III is uniform), expressions (14) and (17) are 
transformed into Fourier integrals in plane waves. 

Expansion amplitudes )( 1 and ),( 2y )( 1C  

and )( 2d  define an electromagnetic field in the 

regions II and III for the two types of waves of a strip 
waveguide and, depending on the parity, the solutions 
by x may differ only in sign. 

These amplitude and propagation constant h 
determining the field of a strip waveguide are 
determined out of matching conditions of the fields at 

the boundaries bx  . Because of the symmetry of 

the system relative to the plane 0x  it is sufficient to 

consider only the boundary conditions on one surface 

bx  . 

Let’s assume that reflection of waves on the faces 

bx   occurs predominantly without transformation, 

that is field in the partial region I has a form of (4) or 
(9). 

At the same time, as before, the components of the 

field zH  for waves (4) and zE , for waves (9) are not 

taken into account. 
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Then from matching zE component for ordinary 

waves (4) and zH  components for the extraordinary 

waves (9) on the boundary bx  , respectively, and 

from the conditions of equality zH  components for 

ordinary waves (4) and yE  components for 

extraordinary waves, with consideration of (16) and 
(19) for the two types of waves, respectively, we 
obtain 
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where ey  )(~
 as ,ay  0)(~  y  as 

,ay    )(~ y  as ay  . 

In accordance with the single-wave approximation, 

let’s multiply expression (20) by 0 ( , )b y  and 

expression (21) by ),( ybe  and integrate by y from 

  to  . As a result, we obtain the characteristic 
equations for determining the propagation constant k 
for two types of waves of a strip waveguide 
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(ordinary wave), 
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 (extraordinary wave). 

 Wherein integrals in expressions (22) and (23) for 

y are easily taken in explicitly at any 0y a . The 

equation for ordinary waves (22) id solved together 
with (5) - (8) and (15), and for extraordinary waves 

(23) together with (10) - (13) and (18). Besides the 
obvious transition to an isotropic medium, the 
resulting solution of the problem contains a number of 
other special cases. For example, comparing the 
dielectric permittivities of a substrate and the 
environment, we obtain the result of the previous 
paragraph for the waveguide in a homogeneous 
medium. If we equate permittivities of a substrate and 
the environment only in the lateral regions II and III 

( x b ), we obtain the result for a rectangular 

waveguide on a stand. 

IV. COMPARISON OF THE THEORY WITH THE 
EXPERIMENT 

In this paper there have been made numerical 
calculations of the characteristic equations obtained 
for an anisotropic waveguide with a uniform 
environment and for an anisotropic strip waveguide, 
which were investigated experimentally in the 
microwave range. 

Comparison of theoretical and experimental results 
allowed to establish the limits of applicability of the 
adopted method of calculation. 

To ensure the reliability of the results, experimental 
studies were conducted in the millimeter (6-16 mm) 
wavelength range for which the measurement 
procedure is well developed and allows one to 
precisely control the shape and dimensions of the 
waveguide. Samples of the test material were placed 
in an open Fabry-Perot cavity formed by the mesh 
reflector and copper mirror. Through the mesh 
reflector desired type of oscillations were excited in 
the resonator using a dielectric waveguide, which was 
simultaneously used for indicating resonance. 
Equipment (klystron oscillator, heterodyne 
cymometer) used in the process provides a measure 
of the refractive index of the waveguide with an 
accuracy of 1%. Upon that, the measured values do 
not differ from the theoretical only in the third decimal 
place, i.e. they are the same within experimental 
accuracy. 

 
Fig. 2. Theoretical and experimental data for two 

main types of waves of a ruby waveguide on a 
substrate made of PTFE-4 
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Fig. 3. Basic types of waves of a ruby waveguide 
embedded in a substrate made of PTFE-4 

V. RESULTS AND CONCLUSIONS 

Thus, a comparison of theoretical and 
experimental data shows that a single-wave 
approximation quite accurately describes the main 
types of rectangular waveguides. Upon that the 
accuracy of the method increases with 

increasing ratio of the sides of the waveguides. 
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