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Abstract— A statistical method based on 

Cluster Last Principal Component (CLPC) 
algorithm to identify nonlinear and dynamical 
models from input-output data clusters of black 
boxes is presented. Each of data clusters is on a 
time window. For every data cluster an appraiser 
updates the parameters of a Gaussian time-
varying model via an optimality design criterion 
that maximizes the Likelihood function. The 
estimated steady-state parameters of this model 
are quasi constant values. An experimental 
application to identify the nonlinear model of the 
angular position control system of a brushless 
motor is developed.  

Keywords— Clustering, Last  principal 
components,  model  identification  

I.  INTRODUCTION  

The Principal Component Analysis has been the 
subject of considerable research effort over the last 
few years. In [1], [5] the Total Least Square (TLS) 
algorithm is proposed. In classical least square 
regression, errors are defined as the squared distance 
from the data points to the fitted function, as 
measured along a particular axis direction.  Often, one 
has a data set in some large-dimensional space, but 
the actual data are closed to lying within a much 
smaller-dimensional subspace. In such cases, one 
would like to project the data into the small-
dimensional space in order to analize them. 
Specifically a subspace that captures most of the 
summed squared vector lengths of the data must be 
determined. The axes for this low-dimensional space 
are known as the Principal Components of the data. 
Generally fundamental objective of Principal 
Component Analysis (PCA) [6],[7],[9],[10] is projecting 
a set of input output data of a system into a lower 
dimensional space that accurately characterizes the 
state of the process; but this method effectiveness is 
limited by its global linearity. In [10] and [14] a 
Multiway Principal Component Analysis (MPCA) is 
proposed for predictive diagnosis of a Wastewater 
Treatment plant. In [4], [11], PCA is formulated within 
a maximum-likelihood framework and the subspace is 
estimated in Maximum Likelihood sense using a 

probabilistic generative model. In [2], [3], [8] there are 
techniques of identification of nonlinear systems 
based on training and adaptive-training algorithms 
and using neural networks. In [9] is proposed a 
statistical estimate algorithm based on Last Principal 
Component (LPC) to estimate the nonlinear  model of 
a planar manipulator. While TLS algorithm can be only 
applied to identification of static systems, LPC 
algorithm can be also applied to on-line identification 
of dynamical systems.  

In this paper a new identification approach based 
on statistical Cluster LPC (CLPC) algorithm applied to 
estimate nonlinear models from input-output data of 
black boxes is developed. Since many process are 
highly nonlinear, one must to take knowledge about 
the same process and the operational behaviour of 
process parameters along the time. For this reason a 
clustering of the input output data has been taken into 
consideration where each of data clusters is on a 
window time. The main idea is that, particularly in 
motion problem, large data sets (for example angular 
positions of motors) can be nonlinear, but data in 
small clusters are sufficiently linear. In any case from 
the last principal component an information of linearity 
degree in a cluster can be obtained opportunely. This 
paper is organized as follows. In Section II the known 
TLS problem is presented and relation between this 
method and the LPC algorithm is developed. In 
Section III the details of the statistical CLPC algorithm 
will be pointed out. The statistical gaussian LPC 
model is developed and the problem of parameters 
estimation of this model in maximum likelihood sense 
is presented. The LPC model is similar to the ARMA 
model [12], [13]. However, in this paper a method of 
least squares is used to estimate the parameters of 
the model. In this case the solutions are the LPC 
filters coefficients, therefore the model is called “LPC 
model”. In section IV a generalization of the LPC 
problem to identify multi input multi output (MIMO) 
systems from a linear experimental data sets is 
presented. In section 5 a cluster LPC approach is 
adopted to identify nonlinear models. For every data 
cluster this algorithm updates the parameters of the 
LPC Gaussian model according to an optimality 
criterion that maximises the likelihood function and 
using an appraiser called “finite state machine”. The 
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inputs of this appraiser are the data clusters of the 
black box, while the outputs are the time-varying 
parameters of the LPC gaussian filter. The problem of 
degree of linearity of the data in a cluster by means of 
LPC algorithm has been discussed and in particular 
the difference from the minimum and the maximum 
principal component is very important to value them. 
In Section V an application to identify the brushless 
motor model is presented. The inputs of the appraiser 
are input-output data clusters of an experimental 
control system of a brushless motor. The position 
commands for testing the CLPC algorithm have been 
implemented in C language using software, hardware 
and graphic interface of a brushless motor. Using the 
statistical CLPC algorithm, the actual angular position 
of the brushless motor and the non linear control 
torque have been estimated.  

 

II.  LPC VERSUS TLS  ALGORITHM 

Suppose one wants to fit the N dimensional data 
with a subspace (line/plane/hyperplane) of 
dimensionality N-1. The space is defined as 
containing all vectors orthogonal to a unit vector u and 
the optimization TLS problem can be expressed as: 

2
min Mu

u
                           (1) 

where 

1
2
u  

and  M is a matrix containing data vectors in its rows. 
In particular let the Singular Value Decomposition as: 

T
USVM                                  (2) 

where U and V are orthogonal matrix and S is a 
diagonal matrix with positive decreasing element, it 
yields: 

uSVVSuMuMuMu
TTTTT 

2
               (3) 

The problem (1) can be modified as follows: 

SαSα
TT

α
min                                 (4) 

where  

uVα
T ,   1α  

The matrix SS
T

 is a square and diagonal matrix 

with diagonal elements 
2

ns (singular values). Let Ns  

the smallest (last) value of ns , it yields: 

2222222

NN

n

nNnn ssss   αSαSα
n

TT     

                               (5) 

Therefore the solution of the problem (4) is:  

nopt eα  T]1   0.....0   0[                  (6) 

The solution (6) is the standard basis vector of Nth 
axis and it can be transformed into the original 
coordinate system (cf. eq. 1) as follows: 

Noptopt αVαu                        (7) 

where Nα  is the Nth column of V matrix. Therefore 

the solution of the problem (1) is the column of V 
matrix associated with the minimal singular value. 

Total Least Squares (TLS) and Principal 
Components problems are often stated in terms of 
eigenvectors. The eigenvectors of a S square matrix 
are considered: 

vSv                           (8) 

where  is the eigenvalue associated with the v 
eigenvector. 

Considering the M matrix of data values and using 
the singular value decomposition (2), the total least 
square problem may be formulated as follows: 

)(minmin
2

MvMvMv
TT

vv
                   (9) 

Therefore it yields: 

)( vSVVSvvUSVUVSv TTTTTT   (10) 

If nvv  is the nth column of V, we have: 

nn

n

T

n

T

veV

vSVVSMvM

22

)(

nn ss 


                            (11) 

We observe that nv  and   
2

nn s  are the 

eigenvectors and the eigenvaules of the MM
T

 
matrix respectively. 

In summary the principal components are the 

eigenvector of the MM
T

 matrix. The Last Principal 
Component (LPC) is the eigenvector which 
corresponds to smallest eigenvalue and this solves 
the problem (9). In particular the correspondent 
eigenvectors constitute an hyperplane. This 
hyperplane minimizes the squared distances from 
each row of the M matrix to the same hyperplane. If 
there are eigenvalues equal to zero, the 
correspondent eigenvectors show linear relations 
between the data column of M matrix.  In this 
approach the nonlinearities of the data are not 
considered. 

 

III. LAST PRINCIPAL COMPONENTS ALGORITHM 

The dynamical linear-in-the-parameters LPC model 
is given by:  
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where Yn is the vector of nominal output data,  nε is 

the output noise vector, Un is the vector of  nominal 

input data, nξ  is input noise vector, nε  is the output 

noise error,  ai  and bi are the parameters of the 
model, N is the order of the model  and n is a discrete-
time variable. The r(n) term is a random noise. Also is: 
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 Trnrnrnrn )( )...1(  )()( r  

From (12) and (13) we have a system of N+1  
unknown quantities and r equations.  The unknown 
quantities are:  

 Naaa  ...  10a  

] ...  [ 10 Nbbbb  

The model (12) can be written as follows: 
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where 
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are the measured values of the input-output data. 
Now one equation of the system (12) is: 
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The model (15) can be written as follows: 
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                 (16) 
where 
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By using the following notation: 
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the model (15) can be written as: 

)()()( nrnn T

m

T

m  buay                                   (17) 

The aim is to calculate the values of a and b 
parameters from the values of input-output data of a 
generical black box. It will be assumed that r(n) is a 
random variable with independent values and 
gaussian distribution as follows: 

2)]([   ;)]([ rnrVarcnrE                                                                                                                               

The r(n) gaussian distribution function is defined as 
[9]:  
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where: 

 )()( nnn mm uyz                                                (19) 

is the matrix of the measured input-output data and

 Tbal      

is the vector of the parameters.             
    The probability function is defined as: 


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The logarithmic Likelihood function is given by: 
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The estimation problem of a and b parameters can 
be formulated. 

 
Problem. Consider a set of experimental data (19). 

The goal is to estimate a and b parameters of the 
model (15) to minimize the following performance 
index [9]: 
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where is the Lagrange multiplier.  
 
Solution.  Differentiating the performance index 

(22) by calculus of cJ  / it results: 
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It yields: 
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where  
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Substituting (24) into performance index (22), it 

yields: 
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where: 
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Minimizing (26) with respect to l, we can write: 

0
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From (28) it results: 

 lAl 2

r                                                        (29) 

Now it is interesting to note that 
2

r  is an 

eigenvalue of A matrix and l is the correspondent 
eigenvector. 

All the eigenvectors of A are the Principal 
Component and we observe that A depends 
opportunely on the I/O data  of a generic black box. 
Now the second derivative of performance index (26) 
can be calculated: 

IA
l
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
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where I is the identity matrix. To solve the problem, 
the (30) must be positive semidefinite. Therefore we 
have: 
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l
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From (29) and (30) it yields: 
2

rAxx
T

                                              (32) 

The (32) is validated if only if 
2

r  is the smallest 

eigenvalue of the matrix given by (27). The 
eigenvector l which corresponds to smallest 
eigenvalue is the Last Principal Component. In this 
case the last principal component solves the 
mentioned problem. The parameters a and b of the 
LPC gaussian model are estimated and the model  
(17) is identified. In z domain the identified model (cf. 
eq. 17) is: 

        (33) 
Therefore it yields: 
 

               (34) 
 
Note that the stability of the gaussian model 

depends on aj parameters. The block diagram of the 
mathematical model (33) is shown in Fig. 1. 

 

 
 Fig. 1. Block diagram of an LPC gaussian model. 
 
Remark 1. Referring to the above model (15) this 

remark is essential. The choice of N is very important 
in the process identification. In particular an iterative 
technique can be adopted and  from N=1, the value of 
N can be increased to reduce the value of the index 
(22) as much as possible. 

 
 

IV. LPC WITHOUT CLUSTERS ALGORITHM FOR MIMO 

MODELS 

With reference to the multi-input multi-output 
(MIMO) black box of Fig. 2, this is a system with q 

measured input values )...1  ),(( qjnmj U and q 

measured output values )...1),(( qjnmj Y . Note 

that there are q equations systems here (cf. eq. 12):  
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                                                                                (35) 
Each of system (cf. eq. 14) is of r equations and 

N+1 unknown quantities )( Nr  , where N is the 

order of the identified model.  
Now the steps of the statistical LPC algorithm for 

the identification model of a black box without cluster 
can be formulated with reference to all the equations 
of the system (35) and solution of the problem 
mentioned in previous subsection (cf. eq. 22).  

1) define the input output data matrices of  
MIMO black box:  
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2) compute mean values of the single lines of 

the Mnj matrices and define: 



N

n
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N 1

1
MZ ;  

3) calculate the following matrices: 
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4) calculate the minimum eigenvalues of Aj 
matrices (j=1…q). 

From the eigenvectors the following parameters are 
achieved: 
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Remark 2. Referring to the above MIMO 

identification model method it is important to make the 
following remark. The model (35) is linear and, as it is 
well known, the last principal component indicates the 
possible linear relations between the input-output data 
of the Mnj (j=1…q) matrix . For non linear data set  the 
above approach must be changed. For this reason in 
the next section a cluster approach is developed. 

 

V. LPC WITH CLUSTER (CLPC) FOR MIMO 

NONLINEAR MODELS IDENTIFICATION 

In this section a statistical Cluster LPC (CLPC) 
method to identify nonlinear models is presented.  In 
fact the sets of the input output data from generical 
black boxes can be very large and non-linearities are 
possible. Therefore the input output data of the black 
box will be divided in clusters. In every cluster the 
data must be sufficiently linear.The problem of degree 
of linearity in a cluster is explained by means the LPC 
algorithm.  Also, since the data are time varying, the 
clusters will be organized in time windows and for 
each window a finite state machine will update the 
parameters of a LPC dynamical gaussian model via 
an optimality design criterion that maximises the 
likelihood function of the data. So the steady state 
LPC gaussian model will be the identified model of the 
black box.  

In many systems are in very large sets with 
substantial non-linearities. Therefore we cannot use 
the LPC model in a large sets of data (see Fig. 2.a). 
The linearization of the data (see Fig. 2.b) before to 
apply the previous steps is not convenient for 

approximation problems and we must apply a 
clustering approach (see Fig. 2.c). In this work each 
cluster of data is on opportunely window time.  
Therefore the CLPC algorithm is developed. Fig. 3 
shows the block diagram of the statistical CLPC 
algorithm. For every window the parameters of the 
model  (35)  must  be  uploaded and an appraiser 
which estimates the aj and bj (j=1…q) parameters in 
every  time  is   developed. This appraiser is called 
“finite state machine”.  A finite state machine is a 
system of discrete inputs-outputs and in particular is 
defined by a set of inputs, a set of outputs, a set of 
states, a set of maps from states and input into states 
and outputs, and an initial state. The inputs of the 
finite state machine are the input-output data clusters 
from the black box and the data are organized in the 
Mn matrix (cf. eq. 36) for every cluster. For each 
cluster the outputs are the time varying parameters (cf 
eq. 38) of the LPC gaussian mathematical model (cf. 
eq. 35). As it is well known the concept of state in 
control theory means capturing information about 
operation of the system in a set of variable. The state 
provides the task with information indicating what 
action is required at each scan. The parameters of the 
finite state machine of this work are as follows: 

1) parameters_sizes: they are the sizes of 

jj ba , (j=1…q) vectors; 

2) window_size: it is the amplitude of the 
window-time for executing the LPC algorithm; 

3) data_ cluster_ dimension:  it is the updating 

interval of  jj ba ,  (j=1…q) values;  

4) sample_time: it is the desired sample time. 
 
The state components of the finite state machine 

are: 
1) last window_sizes of input-output data for 

model identification; 
2) counter; 
3) last updating of aj and bj parameters. 
 
In every time  depending on choice of sample time 

the finite state machine performs the following tasks: 
1) buffering of a new state vector from the 

previous state and from new input (state transition); 
2) output calculus only from new state vector. 

 
Fig. 2. (a) large set of data; (b) linearization of data; 

(c) clusters data approach. 
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Fig. 3. CLPC algorithm. 

 
Step by step the appraiser updates the state. The 

window of input-output samples is translated and 
there is an increment of the value of a counter. If this 

value is maximum (data_cluster_dimension),  jj ba ,  

are updated using LPC which maximises the 
likelihood function (cf eqs. 21-22). In other words the 
CLPC algorithm is designed to be operated through 
repeated execution of statistical LPC algorithm 
depending on data_clusters_ dimension and on 
window_size.  For every cluster the minimum or null 
eigenvalue computed by the fourth step of the 
statistical LPC algorithm  of the previous subsection 
indicates possible linear relations between the data of 
the cluster. In particular from LPC algorithm applied to 
data of a cluster, if there is many difference between 
the maximum and the minimum eigenvalue, then 
linear relations between the data of the cluster are 
guaranteed. In fact, if the minimum eigenvalue is very 
small, then the disequality (32) is strictly verified and 
the likelihood function is maximum. We observe that 
the new state vector of the finite state machine 
depends on the previous state and on the new input. 
Therefore in this case the algorithm converges after a 
few clusters analysis if there is many difference 
between the maximum and minimum eigenvalue and 
this difference is quasi constant for each remaining 
cluster. So the outputs of the CLPC algorithm are 
quasi constant after a few clusters analysis. The 
choice of the data_ cluster_ dimension must 
guarantee  the convergence of the algorithm and it 
depends on the nonlinearity degree of the data. The 
problem of the convergence is shown in the simulation 
experiments of the next section. 

 

VI. APPLICATION OF THE CLPC ALGORITHM TO THE 

MODEL OF THE CONTROL SYSTEM OF A BRUSHLESS 

MOTOR. 

The control system of the brushless motor consists 
of a power amplifier, resolver interface, and digital 
motor control circuits. This provides everything that is 
needed to control the motor’s torque, velocity or 
position. Fig. 4 shows the servo block diagram of the 

motor in position control mode. There are a position 
loop proportional controller (position gain), a velocity 
loop proportional controller (velocity gain), a velocity 
loop integrator (velocity integrator). There are low-
pass filters and notch filter to reduce mechanical 
vibrations. The input and output signals of the control 
system are the position command and the position 
signal respetively. The input-output of the motor are 
the torque and the position signal respectively.  

   

 

Fig. 4. Control position system of the brushless  

A single-input, single-output (SISO) system is 
presented. Therefore the index j (cf. eq. 36)  is equal 
to j=1. The input data Um of the matrix Mn (cf. eqs. 35-
36) are the position commands in every time (see Fig. 
5), while the output data Ym (cf. eqs. 35-36) are the 
position signals in every time. As regards the cluster 
approach, Table 1 reasumes the parameters of the 
CLPC algorithm. 

Sample Time 10 ms 

Parameter_size 3 

Window_size 201 samples 

Window_time 2 s 

Data_ cluster_dimensionn 12 samples 

Table 1. CLPC parameters. 
 
Since the parameter_size is equal to 3 and j=1, it 

yields  (cf. eq. 38): 

     ,,   ,, 2111011211011 bbbaaa T

j

T  ba                 (39) 

 
In this case is N=2. A specific type of position 

command is used: ramp with saturation to implement 
the nonlinearity (see Fig. 5). This signal is opportunely 
implemented using hardware and software of the 
brushless motor. For each data cluster, Fig. 6 
summarises the difference D between the maximum 
and the minimum eigenvalue. Fig. 6 shows that D 
increseases for each cluster data analysis and after a 
few clusters analysis it is quasi constant. 
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Fig. 5. Position command [rad]. 
 

                    
             
                 Fig. 6. D for each cluster. 
 
Figs. 7-12 show the outputs of the CLPC algorithm  

Since after a few clusters analysis the parameter D is 
high and it is quasi constant for each remaining 
cluster,  the parameters (39) are quasi constant after 
a few clusters data analysis.  

 
 

 
                    Fig. 7. a01 parameter. 

 
                            Fig. 8. a11 parameter.      Fig. 9. a11 parameter. 
 

 
Fig. 9 a21 parameter 

 

 
    Fig. 10. b01  parameter. 

 

 
Fig. 11. b11  parameter. 
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Fig. 12. b21 parameter. 

      
As regards the brushless motor as actuator of the 
control system shown in  Fig. 5, the inputs are the 
torque commands while the outputs are the position 
signals. Using the quasi constant outputs of the CLPC 
algorithm, the input-output model of the control 
system has been identified. Figs 13-16 show the good 
efficiency of the CLPC identification algorithm. In 
particular in Figs. 13 and 14  the experimental and  
estimated torque commands and the identification 
error of the control torque as difference between the 
experimental and estimated control torques have 
been shown.  

 
Fig. 13 Experimental torque command (-), estimated 

torque command (--) [Nm] 
 

 
Fig. 14 Torque Command identification error 

                    
         In Figs. 15, 16 and 17 the experimental values 
of the  position signal, the estimated position signal 
and the identification error as difference between the 

experimental and estimated values of the same signal 
have been sketched respectively. 
 

 
Fig. 15  Experimental angular position of the 

brushless motor 
 
 

 
Fig. 16  Estimated angular position signal of the 

brushless motor 
 
 

 
Fig. 17  Error identification of the position signal 

 
Since the N order of the CLPC algorithm is equal to 

2, the quadratic nonlinearity are well tracked at the 
most. Therefore from Figs. 15-17 we observe a large 
identification error at t=1.4s. However the stability of 
the estimated model by using of the CLPC algorithm 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 2, February - 2015 

www.jmest.org 

JMESTN42350464 138 

ensures the convergence to zero of the identification 

errors. 

CONCLUSIONS 

An algorithm of identification method for nonlinear 
SISO and MIMO model based on CLPC algorithm 
from experimental input-output data of a black box has 
been developed in this work. The approach is based 
on statistical LPC algorithm. The LPC algorithm is 
formulated within a maximum likelihood framework 
using a Gaussian varying time model. But using the 
LPC approach, the data input-output of the black box 
must be sufficiently linear. Therefore a cluster 
approach of the LPC algorithm is proposed. The global 
set of the input-output data can be nonlinear, but in a 
cluster the data are sufficiently linear. From the 
difference between the minimum and the maximum 
principal component, the degree of linearity of the data 
in a cluster can be evaluated. The CLPC algorithm is 
designed to be operated through repeated execution of 
statistical LPC algorithm depending on parameters of a 
finite state machine. The LPC algorithm is executed for 
every data cluster and the parameters are uploaded by 
using the finite state machine, where the new state 
vector depends on previous state and on new input. 
The convergency of the algorithm is ensured if, after a 
few clusters analysis, the difference between the 
maximum and the minimum eigenvalue is high (this 
assure the linearity) and it is quasi constant for each 
remaining cluster. An application to identify the 
nonlinear model of a brushless motor as actuator of a 
control system is developed, where the identification 
errors of the torque command and of the position 
signal converge to zero.  
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