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Abstract—Hyper-Wiener index, edge-vertex
Szeged index and vertex-edge Szeged index are
important topological indices in theoretical
chemical. In this paper, we first determine the
minimum Hyper-Wiener index of graph with
connectivity or edge-connectivity. Then, the edge-
vertex Szeged index and vertex-edge Szeged
index of fan molecular graph, wheel molecular
graph, gear fan molecular graph, gear wheel
molecular graph, and their r-corona molecular
graphs are presented.
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I. INTRODUCTION

Hyper-Wiener index, edge-vertex Szeged index
and vertex-edge Szeged index are introduced to
reflect certain structural features of organic molecules.
Several papers contributed to determine the distance-
based index of special molecular graphs (See Yan et
al., [1] and [2], Gao and Shi [3], Gao and Gao [4] and
[5], and Xi and Gao [6] for more detall). Let P, and C,
be path and cycle with n vertices. The molecular
graph F,={v}V P, is called a fan molecular graph and
the molecular graph W,={v}V C, is called a wheel
molecular graph. Molecular graph [(G) is called r-
crown molecular graph of G which splicing r hang
edges for every vertex in G. By adding one vertex in
every two adjacent vertices of the fan path P, of fan
molecular graph F,, the resulting molecular graph is a
subdivision molecular graph called gear fan molecular
graph, denote as F£,. By adding one vertex in every
two adjacent vertices of the wheel cycle C, of wheel
molecular graph W,, The resulting molecular graph is
a subdivision molecular graph, called gear wheel
molecular graph, denoted as .

The Hyper-Wiener index WW is one of the recently
distance-based graph invariants. That WW clearly
encodes the compactness of a structure and the WW
of G is define as:

1
= d(u,v)® d(u,
WW(G) — 2 ({u,v}g(G) (u V) +{u,v}§(6) (u V)) .

Let e=uv be an edge of the molecular graph G.
The number of vertices of G whose distance to the
vertex u is smaller than the distance to the vertex v is

denoted by N, (e) Analogously, N, (e) is the number
of vertices of G whose distance to the vertex v is
smaller than the distance to the vertex u. The number
of edges of G whose distance to the vertex u is
smaller than the distance to the vertex v is denoted by

m, (e) Analogously, m, (€) is the number of edges
of G whose distance to the vertex v is smaller than the
distance to the vertex u. The edge-vertex Szeged
index and vertex-edge Szeged index are defined as
follows:

Sz,,(G) _ % eZu (m,(e)n,(e)+m,(e)n,(e))

Sz,, (G):%E_Zw(mu (e)n, (e)+m,(e)n,(e))

Some conclusions on edge-vertex Szeged index
and vertex-edge Szeged index can refer to [7].

In this paper, we first determine the minimum
Hyper-Wiener index of graph with connectivity or
edge-connectivity, then present the edge-vertex
Szeged index and vertex-edge Szeged index of
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I1. MAIN RESULTS AND PROOFS

Let G be a connected graph on n vertices. It is
clear that the Hyper-Wiener index is minimal if and

only if G=K, in which case, wG)= WW(G)-
n(n-1)
2 In what follows, we investigate when a

graph with a given vertex or edge-connectivity has
minimum Hyper -Wiener index.

Theorem 1. Let G be a k-connected, n-vertex
graph, 1=k=<n-2 . Then

n(n-1)

W(S) o +2(n—k—1)-
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Equality holds if and only if G=K V (K1Y Kn.1) .

Proof. Let Grin be the graph that among all

graphs on n vertices and connectivity k has minimum

Hyper-Wiener index. Since the connectivity of G is

) X
k, there is a vertex-cut X<V (Gmln ), such that | |:k.

Ga)

Denote the components of G -X by G,,G,,...,

Then each of the sub-graphs Gl,Gz,...,Gw must be
complete. Otherwise, if one of them would not be
complete, then by adding an edge between two
nonadjacent vertices in this sub-graph we would arrive
at a graph with the same number of vertices and
same connectivity, but smaller Hyper-Wiener index, a
contradiction.

It must be @ =2. Otherwise, by adding an edge
between a vertex from one component and a vertex

from another component G;,G,,..., @, if @>2 | then
the resulting graph would still have connectivity k, but
its Hyper-Wiener index would decrease, a

contradiction. Hence, Gmi” -X has two components G,
and G,. By a similar argument, we conclude that any
vertex in G; and G, is adjacent to any vertex in X.

Denote the number of vertices of G; by n; and that
of G, by n,. Then n;+n,+k=n and by direct calculation
we get

1 1
WW (Gy) 2 2 (D D,
1 1
Ek(k 1 K +n,) 4nn2}{2 (n1—1)+
1
= -1) =k(k-1
n2(n2 )+2 ( )+k(n1+n2)+2nln2}}

which for fixed n and k is minimum for n;=1 or n,=1

. This in turn means that Gmi": KV (K1Y Kige)-

Direct calculation yields
n(n-1)

WW (G,y) _ +2(n—-k-1)

which completes the proof.

The edge-connectivity version for Theorem 1 is
also valid. Here the case k=n-1 needs not be
considered, since the only (n-1)-edge connected
graph is K.

Theorem 2. Let G be a k-edge connected, n-vertex
graph, 1=k=<n-2. Then

n(n-1)

W (G) +2(n—k—1).

Equality holds if and only if G=K V (K1Y K,4.1)

Proof. Let now G denote the graph that among
all graphs with n vertices and edge-connectivity k has
minimum Hyper-Wiener index. Let X be an edge-cut

of G with |X|:k. Then Gmir‘—X has two

components, G; and G,. Both G; and G, must be

complete graphs. Let |V (Gl)| =n, and |V(G2)| = ny,
ni+ Ny=n.

Denote the set of the end-vertices of the edges of

X in G; by S, and that in G, by T. Let |V (G —S)| _

NG-9)

There are

1 1
—n,(n,-1) —n,(n, -1
2 (N, )+2 ,(N, )+k:|E(Gmin)|

pairs of vertices at distance 1, and 43, pairs of
vertices at distance of 3. All other vertex pairs, hamely

)
2) |[E(G,) aa,

are at distance 2. Consequently,

1 1
WW(Gmin):E{ 2 1( )

N1
-1 -1
+k]+4[(2j (2 n(n—1) 2 (M, )+k)_a'132]

2n ,(n, —1)

n
n(n -1 n(n—l) []
Sty 2 +2 2\ -
1
n n -1 —n,(n, -1
2" g )+k)-a1a21+3[a1a2]}}
1 1
- = -1 -1
—2{{2n(n )3k+ nln2+5ala2}+{ n(n )
K+ n1n2+a1a2}}
1n(n—l)
-2 Ok+ 2nn, + 3a,a,

which for fixed n and k is minimum for n;=1, a;=0

or ny=1, a,=0 . This, as before, implies Gmi“ = K¢V (K;

U K1). Hence,
n(n-1)

min) =

WW(G +2(n—k - 1)

Sz, (1.(F)) _ r2(2n2 +4n—6)

Theorem 3.
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Jrr(gn2 +4n—-20)+(2n® +§n ~12)

Proof. Let P,=vyv,...v, and the r hanging vertices

r
of v, be Vi , Vi Vi (1Si<n). Letv be a vertexin F,

1 2
beside P,, and the r hanging vertices of v be vV, V

, Vr. Using the definition of edge-vertex Szeged
mdex we have

Sz, (1. (F)) -

—ZZ

w')+m, (wn, (W)

-ZZ W) +m,(w)n, ()
_ZZ |+1 I |+1 | |+1)+m ( i |+1) Vi, ( I+1))
%izz(m (Vv )nvi (Vivij)+mvi (Vivij)nvij (ViVij )

%[1><(r+n(r +D)+(2n+r+nr-2)x]]

%(2[(r +2)x(N=)(r+1)+(2n+nr—-2r —4)x(r +1)]
+(n=2)[(r+2)x(n=2)(r+1)+(2n+nr—-2r -5)x(r +1)])
%(2[(2r +3)x(r+21)+(r+1)x2(r +1)]

+

+2ACr+3)x2(r +1)+ (2r +2) x2(r +1)]
+(M=9[2r+3)x2(r +1)+(2r +3)x 2(r +1)])

%[1x(r+n(r +1))+(2n+r+nr-2)x1]

+

r’(2n* +4n-6) + r(g n® +4n-20)+(2n +§n—12)

3
2n° +=n-12
Corollary 1. Sze"(F"): 2

Theorem 4. Szev(lr(vvn)):rz(n2 +8n—3)

+r(g n®+17n —2—27)+ (10n-9)

Proof. Let C,=v;V,...v, and V V ..... Vi

hanging vertices of v; (1<i<n). Let v be a vertex in

2
Ve Vbether hanging

vertices of v. We denote V"V’”l-vnvl In view of the

definition of edge-vertex Szeged index, we infer

5z,,(1,W,)) _
DRICHY

i=1 e=uv

1
W, beside C,, and v,

On,(w')+m, (wn, (w))

_Zz(m (Won, (w,) +m, (w)n, (W)

+ i=1 e=uv

—ZZ

i=1 e=uv

| |+1 | |+1) mv( i |+l) (V|V|+l))

> Zn: z Z (m vy, )nv, (Vivij) +m, (ViVij )nvii (ViVij )

2 i=1 j=1e=uv

%[1><(r+n(r +1)+@2n+r+nr=1)x1]

+

2[(r+2)><(n—2)(r +1)+ (2n+1nr —2r =5)x (r +1)]

2[(2r +3)x 201+ 1)+ (2r +3)x 2(L+1)]

%[(Zn +r+nr=1)x1+1x (r+n(r+1))]

+

r’(n*+8n-3)+ r(gn2 +17n—2?7)+ (10n-9)

SZev (\Nn) :10n—9 )
Sz,, (1, (F,)) _r?(22n?

Corollary 2.

Theorem 5. —35n+20)

(—n —%n +50) + (—n —gzln 30)

V. . .
Proof. Let P,=viv,...v, and "*'be the adding

vertex between v; and vi,;. Let V V ..... Vi

1 2
o2
hanging vertices of v; (1SiSn). Let M+t iR
4 _ _ V.. .
i+l pe the r hanging vertices of "*! (1<i<n-1). Let
v be a vertex in F, beside P, and the r hanging

1 2
verticesofvbe V , V' ... V.

By virtue of the definition of edge-vertex Szeged
index, we yield

Szev(lr(lfn)):
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—ZZ(m (wn, (w') +m, (w')n, (W))

—ZZ(m (win, (w;) +m, (w;)n, (w;))
—ZZZ(m (vvn, (vv')+m, (vivij)nVij (vv)))

+

_Z( ||+1 Vi ||+1 Vi ||+1)+mv(v|v| |+1)nv (V| ||+1))

i+l

+
1¢
E ||+1 |+1 Vi ||+1 |+1)+m (VI |+1V|+1)n (VI |+1V|+1))
104 s
EZZ(m ( ||+1 " ||+1( ||+1VIJH1)
+ <=l j=t i
mV| i+ (V' i1V 1) (V' '+1V|j|+1 ))
%[(Sn +2nr =3)x1+1x (r +(r +1)(2n-1)]
+

%(2[(2r +1)x(2n=2)(r +1) +(2nr +3n-2r -5)x2(r +1)]

+

(N=2)[(Br+2)x(2n=3)(r +1)+(2nr +3n-3r-7)x3(r +1)])

%[1>< (2n(r +1)—1) + (3n+ 2nr —3) 1]

+

nT_l[(an =3r+3n-7)x3(r+1)+(3r+2)x(2n-3)(r +1)]

+

nT_l[(an =3r+3n-7)x3(r+1) +(3r+2)x(2n-3)(r +1)]

(”anp_(mur+n 1)+ (3n+2nr —3)x1]

+

r’(22n° 35n+20)+r(—n —%n +50)

(—n —%n +30)

oy 20
Corollary 3. ~& 2

Theorem 6. Sz,,(1,(W,)) _r*(22n* —16n)

79 39 , 47
—n2—— +2)+(n?-2Ln-1
+r( > )+ ( > )

Proof. Let C,=v1v5...v, and v be a vertex in W,

beside C,, and Viirt | pe the adding vertex between v,

1 2 r
and vi,,. Let V', V' ..., V' be the r hanging vertices
1 r
of v and Vi s, Vi be the r hanging vertices of v;
1 2 r
1<i<n). Let Vo —Vin gng Vi Viin Viia be
. . V.. .
the r hanging vertices of "*! (1=i<n). Let Voni =

V”-l, Voa=V1 | 1n view of the definition of edge-vertex

Szeged index, we deduce

Sz,,(1, (W,)) _
—ZZ(m (wW)n, (W')+m, (w')n, (W))

i=1 e=uv

—ZZ(m (win, (W) +m, (w;)n, (w;))

i=1 e=uv

iii 3 (m, (e, ()Y +m, (d)n, ()

23 j=1 e=uv
+
1
EZ m Vi i,i+1)nvi (Vivi,i+1)+mvi( ||+1)n

( |Vi,i+1))

Vit

1&
EZ(m\/H1 (Vi,i+1vi+1)nvi i1 VI |+1V|+1) + mvi " (VI |+1V|+1)nv (VI |+1V|+1))
i=1

i+

Py Z Z (mVJ (VI H':I-V|J|+1 | i+l ( i H':I-V|J|+1)

i=1 ]_1 i+l

mv (VI |+1 1) vij,i+1 (Vi H—lvJ ))

i+l i+l

%[(3n +2nr +r =) x1+1x(r+2n(r +1)]

g[(Br +2)x(2n=2)(r +1)+(2nr +3n—-2r -5)x3(r +1)]

%;ﬂx«2n+naw4)—3+(3n+2nr+r—Dxﬂ

+
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g[(an—2r+3n—5)x3(r 1)+ (3r+2)x(2n=2)(r+1)]
g[(an—2r+3n—5)><3(r+1)+(3r+2)><(2n—2)(r+1)]

+

%[1><((2n +1)(r+1) 1) + (3n+2nr +r—1)x1]

(22n -16n)+r(—

Szev (Wn) = ?

Corollary 4.
Theorem 7. Szve(lr(Fn)) —

r3(1n3 3 +§n+1)

2 2 2 2

5, 18, 18 5

9
ri(2n*+7n- 10)+r(= -2+ (n?

n —Enz +15n-19)

Proof. Using the definition of vertex-edge Szeged
index, we have

Sz, (1, (F)) _

—ZZ(m (wn, (W) +m, (w'n, (W)

|1euv +

—ZZ(m (win, (w;)+m, (w;)n, (w;))

_ZZ I+1 v '*1 |+1 Vi |+1)+m ( i |+1) ( |+l))
%zn:i Z (mV' (V )nv,j (Vivij) + mvi (Vivij )nvi (Vivij ))

%[1><1+(2n+ r+nr—2)x(r+n(r+1))]

+

%(2[(r+2)x(r +1)+(2n+nr-2r-4)x(n-1)(r +1)]

+(N=2)[(r+2)x(r+D)+(2n+nr-2r-5x(n-2)(r +1)])

%(2[(2r+3)><2(r +D) +(r+D)x(r+1)]

+2ACr+3)x2(r +1) + (2r +2) x2(r +1)]
+(M=9[2r+3)x2(r+1)+(2r +3)x2(r +1)])

%[1><1+(2n+ r+nr—2)x(r+n(r+1)]

+

r3(%n3+gn2 +gn+%)+r2(2n3+7n—10)

+r(§n3—§n2 B, ——)
2 2 2
+(n® —% n”+15n-19)
n3—gn2+15n—19
Corollary 5. SZV&(F )= 2 .
Theorem 8. SZ"E(IF(W“)):
r3(1n3+§n2+§n+1)
2 2 2 2

2 3

1 1 5 9
2@+ =0 + =) +r(En*-6n° + =n)+(n*-=n’*+12n
( > 2) (2 5 n)+( > )

Proof. In view of the definition of vertex-edge
Szeged index, we infer

sz,.(1,W,)) _
SY (m, (o

i=1 e=uv

)+m,(W)n, (W)

—ZZ(m (win, (W) +m, (w;)n, (W;))

_ZZ I+1 v ”’1 |+1 Vi |+1) + mV ( i |+1) (V|V|+1))
%iz z (mV' (vvn, () + m, (vv/ n, (vv))

%[1><1+ @n+r+nr=1)x(r+n(r +1))]

+

2[(r+2)><(r+1)+(2n+nr—2r—5)><(n—2)(r +1)]

+

g[(Zr +3)x2(1+r)+(2r+3)x2(1+r)]

%[1><1+ @n+r+nr=)x(r+n(r+1))]

+

r“(ln“+§n2 +§n+l)+r2(3n3+1n2+7n—1)
2 2 2 2 2 2
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+r(§n —6n? 2,39 n)+(n® —gn2+12n)
2 2 2

9
n*—=n?+12n
Corollary 6. SZVG(W ) - 2 .

Szve(lr(lfn)):

Theorem 9.
r*(4n°)+r?(16n° —30n” +43n - 28)
+r(21n3—%n2 117n—%) (9n3—%1n2 121n 42)

Proof. By virtue of the definition of vertex-edge
Szeged index, we yield

Sz,,(1,(F,)) -

—ZZ(m n, (W) +m, (wn, (W)

i=1 e=uv +

—ZZ(m (win, (w;)+m, (w;)n, (W,))

i=1 e=uv

—ZZZ(% (v

i=1 j=1e=uv

(vv) + m, (Vv n, (vv')
: nz_ll (mvi‘u1 (Vivi,i+1)nvi,i+1 (Vi) +m, (VYN (YY)
2%

+
n-1

Z(mv (VI |+1V|+1)n (VI |+1V|+1) + m (VI |+1V|+1)n (VI |+1V|+1))

- |Il
i=1

N |-

=
EZZ(mVJ (VI |+1V,J,+1)nvl (VI i+1 ||+1)

i=1 j=1 i+l

mv (V| |+1VJ ) (Vi i+1v-j- ))

i+l i+l l i+l ' i,i+l

%[1x1+(3n+2nr—3)x(r +(r+1)(2n-1]

%(2[(2r +1)x2(r +1) +(2nr +3n-2r -5)x(2n-2)(r +1)]

+

(n=2)[(Br+2)x3(r +1)+(2nr+3n-3r-7)x(2n-3)(r +1)])

%[1><1+ (Bn+2nr-3)x(2n(r +1)-1)]

n7_1[(2nr =3r+3n-7)x(2n=3)(r +1) +(3r +2)x3(r +1)]

(=D 13n+ 2nr ~3)x 2n(r +1) ~1) + 1x1]

_r’(4n®)+r?(16n° —30n° +43n - 28)

, 143,

e 139, ., 81, 141

+117n-—)+(On° =—=n“"+—n-42
2)( > 5 )

81 2 141

~. on®-— +—n-42
Corollary 7. Szve(F”) 2

Theorem 10. Szve(lr(Wn)) —
F(n®+2n? +2n+3)
2 2

19 i 17 190+

85
+r +r(18n*-34n*+—n
(2 2) ( > )

+(9n° —24n* + 24n)

Proof. In view of the definition of vertex-edge
Szeged index, we deduce

Sz,, (I, W,)) _
—ZZ(m (wn, (w')+m, (w')n, (w))

|1euv

_zz(m (w)n, (w;) +m, (w)n, (w,))

i=1 e=uv

+

%Zn:i Z (mV' (Vv )nvij (ViVij )+ m, (Vivij )nvi (Vivij )

i=1 j=1e=uv

+

9 Z( Vijst (V'V' '+1)n (Vlvi,i+1) + mvi (ViVi,i+1)nvi (Vivi,i+1))

| i+l

1
EZ(me (Vi,i+1vi+1)n,+1 ii+l |+1)-|-mvI Hl( i+l |+1) ,‘1(V| |+lV|+1))

i=1

A Z z (m (V| H-lV,JI+1 ) nvl (V| iV, |+1)

i=1 ]_1 |,|

mlel( ||+1 ] )nv (||+1 ))

i+l i+l i+l

+
+ %[1><1+(3n+2nr+r—1)><(r+2n(r +1)]
nT_l[(an—3r+3n—7)><(2n—3)(r+1)+(3r+2)><3(r +1)] )
+
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21 +2)x3(r+1)+ (207 +30-21 -8)(2n-2(r 1]
%+[1x1+(3n+2nr+ r—1)x((2n+1)(r +1)-1)]
g[(;nr—2r+3n—5)><(2n—2)(f +1)+@r +2)x3(r +1)]
2[(;nr—2r+3n—5)x(2n—2)(r +1)+@r +2)x3(r +1)]

%[1><1+ (Bn+2nr +r-)x((2n+1)(r +1)-1)]

9 1rp

r*(n® +2n +2n+ )+r( -19n ——)

+r(18n° —34n° +8—25 n) +(9n° —24n” + 24n)

Corollary 8. S2,,(W,) _on® —24n* + 24n
I1l. CONCLUSION AND DISCUSSION

8L , 141

on®— +—n-42
2

Corollary 7. SZVG(F“)

Theorem 10. Szve(lr(wn)) —
r’(n’ 2 +2n+£)
2 2

+r2(@ n’ —%nz ~19n —%) +r(18n° —34n? +8?5n)

+(9n° —24n* + 24n)

Proof. In view of the definition of vertex-edge
Szeged index, we deduce

Sz,.(1,W,)) _
_ZZ(m (WHn, (W) +m, (w')n, (w'))

i=1 e=uv +

—ZZ(m (win, (W) +m, (w;)n, (W;))

|1euv

%iiZ(m Vv, (uv!)+m, (vv)n, (V)

i=1 j=1e=uv

+

D, (N, () + T, (00, (0.

Vi (Vi,i+lvi+1))

EZ(mVH1 (Vi,i+1vi+1)n Vi VI |+1V|+1) + m (V| |+1V|+1)n
i=1

_ZZ(mVJ (V' i+1 u+1)nv‘ (V' i+1 ||+1)

i=1 ]—l i+l

mlel( ||+1 J )nv (||+l ))

P+l i+l i+l

%[1><1+ Bn+2nr+r-1)x(r+2n(r +1)]

g[(;r+2)><3(l’ +1)+(2nr +3n-2r —5)x(2n - 2)(r +1)]
%+[1x1+(3n+2nr+ r=1)x((2n+1)(r+1)-1)]

2[(+2nr—2r +3n-5)x(2n-2)(r +1)+ (3r+2)x3(r +1)]
g[(;nr—Zr +3n-5)x(2n=2)(r +1) + (3r + 2)x 3(r +1)]

%[1><1+ (Bn+2nr +1 —1)x (2n+1)(r +1)-1)]

oL o

r*(n’ +2n +2n+—)+r (29 —-19n ——)

+r(18n° —34n? 3 n)+(9n —24n* + 24n)

Corollary 8. S,, ~n) -9n®—24n* +24n

3. DISCUSSION

Theorems 1 and 2 establish that the graph with n
vertices, connectivity k, and minimum Hyper-Wiener
index is same in the case of vertex and edge-
connectivity. One may wonder whether Theorem 1
implies Theorem 2, or vice versa. It appears (at least
within the present considerations) that the proofs of
these two theorems are independent.

As already mentioned, the 1- and 2-connected
graphs with maximum Hyper-Wiener indices are
known. The natural question at this point is to ask for

k-connected (k= 2), n-vertex graphs having maximum
Hyper-Wiener index. This problem seems to be much
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more difficult, and, at this moment, we cannot offer
any solution of it, not even for the case k=3.

Another related question is whether n-vertex, k-
vertex connected and n-vertex, k-edge connected
graphs with maximum Hyper-Wiener index differ at all,
and if yes, for which values of k and n.
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