Abstract—Hyper-Wiener index, edge-vertex Szeged index and vertex-edge Szeged index are important topological indices in theoretical chemical. In this paper, we first determine the minimum Hyper-Wiener index of graph with connectivity or edge-connectivity. Then, the edge-vertex Szeged index and vertex-edge Szeged index of fan molecular graph, wheel molecular graph, gear fan molecular graph, gear wheel molecular graph, and their r-corona molecular graphs are presented.

Keywords—Chemical graph theory, organic molecules, Hyper-Wiener index, connectivity, edge-connectivity, edge-vertex Szeged index, vertex-edge Szeged index

I. INTRODUCTION

Hyper-Wiener index, edge-vertex Szeged index and vertex-edge Szeged index are introduced to reflect certain structural features of organic molecules. Several papers contributed to determine the distance-based index of special molecular graphs (See Yan et al., [1] and [2], Gao and Shi [3], Gao and Gao [4] and [5], and Xi and Gao [6] for more detail). Let P_n and C_n be path and cycle with n vertices. The molecular graph $F_n=(V) \cup P_n$ is called a fan molecular graph and the molecular graph $W_n=(V) \cup C_n$ is called a wheel molecular graph. Molecular graph $l(G)$ is called r-crown molecular graph of G which splicing r hang edges for every vertex in G. By adding one vertex in every two adjacent vertices of the fan path P_n of fan molecular graph F_n, the resulting molecular graph is a subdivision molecular graph called gear fan molecular graph, denote as \tilde{F}_n. By adding one vertex in every two adjacent vertices of the wheel cycle C_n of wheel molecular graph W_n the resulting molecular graph is a subdivision molecular graph, called gear wheel molecular graph, denoted as \tilde{W}_n.

The Hyper-Wiener index WW is one of the recently distance-based graph invariants. That WW clearly encodes the compactness of a structure and the WW of G is defined as:

$$WW(G) = \frac{1}{2} \left(\sum_{\{u,v\} \subseteq V(G)} d(u,v)^2 + \sum_{\{u,v\} \subseteq V(G)} d(u,v) \right).$$

Let $e=uv$ be an edge of the molecular graph G. The number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v is denoted by $n_u(e)$. Analogously, $n_v(e)$ is the number of vertices of G whose distance to the vertex v is smaller than the distance to the vertex u. The number of edges of G whose distance to the vertex u is smaller than the distance to the vertex v is denoted by $m_{uv}(e)$. Analogously, $m_{vu}(e)$ is the number of edges of G whose distance to the vertex v is smaller than the distance to the vertex u.

Some conclusions on edge-vertex Szeged index and vertex-edge Szeged index can refer to [7].

In this paper, we first determine the minimum Hyper-Wiener index of graph with connectivity or edge-connectivity, then present the edge-vertex Szeged index and vertex-edge Szeged index of $I_r(F_n)$, $I_r(W_n)$, $I_r(\tilde{F}_n)$ and $I_r(\tilde{W}_n)$.

II. MAIN RESULTS AND PROOFS

Let G be a connected graph on n vertices. It is clear that the Hyper-Wiener index is minimal if and only if $G=K_n$, in which case, $WW(G) = \frac{1}{2} n(n-1)$. In what follows, we investigate when a graph with a given vertex or edge-connectivity has minimum Hyper-Wiener index.

Theorem 1. Let G be a k-connected, n-vertex graph, $1 \leq k \leq n-2$. Then

$$WW(G) \geq \frac{n(n-1)}{2} + 2(n-k-1).$$
Equality holds if and only if $G = K_k \cup (K_1 \cup K_{n-k+1})$.

Proof. Let G_{min} be the graph that among all graphs on n vertices and connectivity k has minimum Hyper-Wiener index. Since the connectivity of G_{min} is k, there is a vertex-cut $X \subseteq V(G_{\text{min}})$, such that $|X| = k$.

Denote the components of $G_{\text{min}} \setminus X$ by $G_1, G_2, \ldots, G_ω$. Then each of the sub-graphs $G_1, G_2, \ldots, G_ω$ must be complete. Otherwise, if one of them would not be complete, then by adding an edge between two nonadjacent vertices in this sub-graph we would arrive at a graph with the same number of vertices and same connectivity, but smaller Hyper-Wiener index, a contradiction.

It must be $ω = 2$. Otherwise, by adding an edge between a vertex from one component and a vertex from another component $G_1, G_2, \ldots, G_ω$, if $ω > 2$, then the resulting graph would still have connectivity k, but its Hyper-Wiener index would decrease, a contradiction. Hence, $G_{\text{min}} \setminus X$ has two components G_1 and G_2. By a similar argument, we conclude that any vertex in G_1 and G_2 is adjacent to any vertex in X.

Denote the number of vertices of G_1 by n_1 and that of G_2 by n_2. Then $n_1 + n_2 + k = n$ and by direct calculation we get

$$WW(G_{\text{min}}) = \frac{1}{2} \left(\frac{1}{2} n_1(n_1 - 1) + \frac{1}{2} n_2(n_2 - 1) + \frac{1}{2} k(k - 1) + \frac{1}{2} n_1(n_1 + n_2) + 4n_1n_2 + \frac{1}{2} n_2(n_2 + n_1) + 2n_1n_2 \right) + k \cdot a_1a_2$$

which for fixed n and k is minimum for $n_1 = 1$ or $n_2 = 1$.

This in turn means that $G_{\text{min}} = K_k \cup (K_1 \cup K_{n-k+1})$.

Direct calculation yields

$$WW(G_{\text{min}}) = \frac{n(n-1)}{2} + 2(n-k-1)$$

which completes the proof.

The edge-connectivity version for Theorem 1 is also valid. Here the case $k = n-1$ needs not be considered, since the only $(n-1)$-edge connected graph is K_1.

Theorem 2. Let G be a k-edge connected, n-vertex graph, $1 \leq k \leq n-2$. Then

$$WW(G) \geq \frac{n(n-1)}{2} + 2(n-k-1).$$

Equality holds if and only if $G = K_k \cup (K_1 \cup K_{n-k+1})$.

Proof. Let now G_{min} denote the graph that among all graphs with n vertices and edge-connectivity k has minimum Hyper-Wiener index. Let X be an edge-cut of G_{min} with $|X| = k$. Then $G_{\text{min}} \setminus X$ has two components, G_1 and G_2. Both G_1 and G_2 must be complete graphs. Let $|V(G_1)| = n_1$ and $|V(G_2)| = n_2$, $n_1 + n_2 = n$.

Denote the set of the end-vertices of the edges of X in G_1 by S, and that in G_2 by T. Let $|V(G_1 - S)| = a_1$ and $|V(G_2 - S)| = a_2$.

There are $\frac{n}{2} E(G_{\text{min}}) \cdot a_1a_2$ pairs of vertices at distance 1, and a_1a_2 pairs of vertices at distance of 3. All other vertex pairs, namely

$$\binom{n}{2} - E(G_{\text{min}}) \cdot a_1a_2$$

are at distance 2. Consequently,

$$WW(G_{\text{min}}) = \frac{1}{2} \left(\frac{1}{2} n_1(n_1 - 1) + \frac{1}{2} n_2(n_2 - 1) + \frac{1}{2} k(k - 1) + \frac{1}{2} n_1(n_1 + n_2) + 4n_1n_2 + \frac{1}{2} n_2(n_2 + n_1) + 2n_1n_2 \right) + k \cdot a_1a_2$$

$$+ \binom{n}{2} - E(G_{\text{min}}) \cdot a_1a_2$$

$$= \frac{1}{2} \left(\frac{1}{2} n_1(n_1 - 1) + \frac{1}{2} n_2(n_2 - 1) + \frac{1}{2} k(k - 1) + \frac{1}{2} n_1(n_1 + n_2) + 4n_1n_2 + \frac{1}{2} n_2(n_2 + n_1) + 2n_1n_2 \right) + k \cdot a_1a_2$$

$$= \frac{n(n-1)}{2} + 2(n-k-1)$$

which for fixed n and k is minimum for $n_1 = 1$, $a_1 = 0$ or $n_2 = 1$, $a_2 = 0$. This, as before, implies $G_{\text{min}} = K_k \cup (K_1 \cup K_{n-k+1})$.

Hence,

$$WW(G_{\text{min}}) = \frac{n(n-1)}{2} + 2(n-k-1).$$

Theorem 3. $S_{\text{min}}(I_r(F_n)) = r^2(2n^2 + 4n - 6)$.
Proof. Let \(P_n = v_1 v_2 \ldots v_n \) and the \(r \) hanging vertices of \(v_i \) be \(v_1^i, v_2^i, \ldots, v_r^i \) \((1 \leq i \leq n)\). Let \(v \) be a vertex in \(F_n \) beside \(P_n \) and the \(r \) hanging vertices of \(v \) be \(v_1^r, v_2^r, \ldots, v_r^r \). Using the definition of edge-vertex Szeged index, we have

\[
S_{cv}(I_r(F_n)) = \\
\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} \left[(m_{i,j}(v_{i,j})n_i(v_{i,j}) + m_i(v_{i,j})n_j(v_{i,j})) + \sum_{j=1}^{r} (m_{i,j}(v_{i,j})n_i(v_{i,j}) + m_i(v_{i,j})n_j(v_{i,j})) \right] \\
+ \frac{1}{2} \sum_{j=1}^{r} \left[(m_{i,j}(v_{i,j})n_i(v_{i,j}) + m_i(v_{i,j})n_j(v_{i,j})) \right]
\]

In view of the definition of edge-vertex Szeged index, we infer

\[
S_{cv}(I_r(F_n)) = \\
\frac{1}{2} \sum_{i=1}^{n} \sum_{r=1}^{n} \left(m_i(v_i)n_i(v_i) + m_i(v_i)n_i(v_i) \right) \\
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} \left(m_{i,j}(v_{i,j})n_i(v_{i,j}) + m_i(v_{i,j})n_j(v_{i,j}) \right)
\]

\[
 = \frac{1}{2} \left[(1 \times (r + n(r + 1)) + (2n + r + nr - 2) \times 1) \right]
\]

\[
+ \frac{1}{2} \left[(2r + 3) \times (2(r + 1) + (2r + 3) \times 2(r + 1)) \right]
\]

\[
+ \frac{n}{2} \left[(2r + 3) \times (2(r + 1) + (2r + 3) \times 2(r + 1)) \right]
\]

\[
= \frac{1}{2} \left[(2n^2 + 4n - 6) + r \left(\frac{9}{2} n^2 + 4n - 20 \right) + (2n^2 + \frac{3}{2} n - 12) \right]
\]

\[
= 2n^2 + \frac{3}{2} n - 12
\]

Corollary 1. \(S_{cv}(F_n) = 2n^2 + \frac{3}{2} n - 12 \).

Theorem 4. \(S_{cv}(I_r(F_n)) = r^2 (n^2 + 8n - 3) \)

\[
+ r \left(\frac{3}{2} n^2 + 17n - \frac{27}{2} \right) + (10n - 9)
\]

Proof. Let \(C_n = v_1 v_2 \ldots v_n \) and \(v_{i,1}^{i,1}, v_{i,2}^{i,2}, \ldots, v_{i,r}^{i,r} \) be the \(r \) hanging vertices of \(v_i \) \((1 \leq i \leq n)\). Let \(v \) be a vertex in \(F_n \) beside \(P_n \) and the \(r \) hanging vertices of \(v \) be \(v_1^r, v_2^r, \ldots, v_r^r \). Using the definition of edge-vertex Szeged index, we yield

\[
S_{cv}(I_r(F_n)) = \\
\frac{1}{2} \sum_{i=1}^{n} \sum_{r=1}^{n} \left(m_i(v_i)n_i(v_i) + m_i(v_i)n_i(v_i) \right)
\]

\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} \left(m_{i,j}(v_{i,j})n_i(v_{i,j}) + m_i(v_{i,j})n_j(v_{i,j}) \right)
\]

\[
+ \frac{1}{2} \sum_{j=1}^{r} \left(m_{i,j}(v_{i,j})n_i(v_{i,j}) + m_i(v_{i,j})n_j(v_{i,j}) \right)
\]

\[
= \frac{1}{2} \left[(1 \times (r + n(r + 1)) + (2n + r + nr - 2) \times 1) \right]
\]

\[
+ \frac{1}{2} \left[(2r + 3) \times (2(r + 1) + (2r + 3) \times 2(r + 1)) \right]
\]

\[
+ \frac{n}{2} \left[(2r + 3) \times (2(r + 1) + (2r + 3) \times 2(r + 1)) \right]
\]

\[
= \frac{1}{2} \left[(2n^2 + 4n - 6) + r \left(\frac{9}{2} n^2 + 4n - 20 \right) + (2n^2 + \frac{3}{2} n - 12) \right]
\]

\[
= 2n^2 + \frac{3}{2} n - 12
\]

Corollary 1. \(S_{cv}(F_n) = 2n^2 + \frac{3}{2} n - 12 \).

Theorem 4. \(S_{cv}(I_r(F_n)) = r^2 (n^2 + 8n - 3) \)

\[
+ r \left(\frac{3}{2} n^2 + 17n - \frac{27}{2} \right) + (10n - 9)
\]

Proof. Let \(C_n = v_1 v_2 \ldots v_n \) and \(v_{i,1}^{i,1}, v_{i,2}^{i,2}, \ldots, v_{i,r}^{i,r} \) be the \(r \) hanging vertices of \(v_i \) \((1 \leq i \leq n)\). Let \(v \) be a vertex in \(F_n \) beside \(P_n \) and the \(r \) hanging vertices of \(v \) be \(v_1^r, v_2^r, \ldots, v_r^r \). Using the definition of edge-vertex Szeged index, we yield

\[
S_{cv}(I_r(F_n)) = \\
\frac{1}{2} \sum_{i=1}^{n} \sum_{r=1}^{n} \left(m_i(v_i)n_i(v_i) + m_i(v_i)n_i(v_i) \right)
\]

\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} \left(m_{i,j}(v_{i,j})n_i(v_{i,j}) + m_i(v_{i,j})n_j(v_{i,j}) \right)
\]

\[
+ \frac{1}{2} \sum_{j=1}^{r} \left(m_{i,j}(v_{i,j})n_i(v_{i,j}) + m_i(v_{i,j})n_j(v_{i,j}) \right)
\]

\[
= \frac{1}{2} \left[(1 \times (r + n(r + 1)) + (2n + r + nr - 2) \times 1) \right]
\]

\[
+ \frac{1}{2} \left[(2r + 3) \times (2(r + 1) + (2r + 3) \times 2(r + 1)) \right]
\]

\[
+ \frac{n}{2} \left[(2r + 3) \times (2(r + 1) + (2r + 3) \times 2(r + 1)) \right]
\]

\[
= \frac{1}{2} \left[(2n^2 + 4n - 6) + r \left(\frac{9}{2} n^2 + 4n - 20 \right) + (2n^2 + \frac{3}{2} n - 12) \right]
\]

\[
= 2n^2 + \frac{3}{2} n - 12
\]
Theorem 6. \(\text{Sz}_v(I_{1}((\tilde{W}_n})) = r^2(22n^2 - 16n) + r\left(\frac{85}{2}n^2 - \frac{79}{2}n + 2\right) + \left(\frac{39}{2}n^2 - \frac{47}{2}n - 1\right) \).

Proof. Let \(C_i = v_1v_2\ldots v_{n_i} \) and \(v \) be a vertex in \(W_n \) beside \(C_i \), and \(v_{j,i+1} \) be the adding vertex between \(v_i \) and \(v_{i+1} \). Let \(v^1, v^2, \ldots, v^r \) be the \(r \) hanging vertices of \(v_i \) and \(v^1, v^2, \ldots, v^r \) be the \(r \) hanging vertices of \(v_{j+1} \) (\(1 \leq j \leq n \)). Let \(v_{n+1} = v_1 \). In view of the definition of edge-vertex Szeged index, we deduce

\[
\text{Sz}_v(I_{1}((\tilde{W}_n})) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} (m_{i,j}(v^j_v) n_i(v^j_v) + m_{i,j}(v^j_v) n_i(v^j_v)) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} (m_{i,j}(v^j_{j+1}) n_i(v^j_{j+1}) + m_{i,j}(v^j_{j+1}) n_i(v^j_{j+1})) + \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} (m_{i,j}(v^j_{j+1}) n_i(v^j_{j+1}) + m_{i,j}(v^j_{j+1}) n_i(v^j_{j+1}))
\]

\[
= r \left(\frac{85}{2}n^2 - \frac{79}{2}n + 2\right) + \left(\frac{39}{2}n^2 - \frac{47}{2}n - 1\right)
\]

Corollary 3. \(\text{Sz}_v(\tilde{F}_n) = \frac{39}{2}n^2 - \frac{101}{2}n + 30 \).
\[
\frac{n}{2} \left[(2nr - 2r + 3n - 5) \times 3(r + 1) + (3r + 2) \times (2n - 2)(r + 1) \right] + \\
\frac{n}{2} \left[(2nr - 2r + 3n - 5) \times 3(r + 1) + (3r + 2) \times (2n - 2)(r + 1) \right] + \\
\frac{nr}{2} \left[1 \times ((2n + 1)(r + 1) - 1) + (3n + 2nr + r - 1) \times 1 \right] + \\
r^2 \left(2n^2 - 16n \right) + r \left(\frac{85}{2} n^2 - \frac{79}{2} n + 2 \right) + \left(\frac{39}{2} n^2 - \frac{47}{2} n - 1 \right) \\
= S_{sz}(\tilde{W}_n) = \frac{39}{2} n^2 - \frac{47}{2} n - 1.
\]

Corollary 4.

\[
S_{sz}(I, (F_n)) = \frac{39}{2} n^2 - \frac{47}{2} n - 1.
\]

Theorem 7.

\[
S_{sz}(I, (F_n)) = r^3 \left(- \frac{1}{2} n^3 + \frac{3}{2} n^2 + \frac{3}{2} n + \frac{1}{2} \right) + \\
r^2 \left(2n^2 + 7n - 10 \right) + \left(\frac{5}{2} n^3 - \frac{13}{2} n^2 + \frac{13}{2} n - \frac{55}{2} \right) + \left(n^2 - \frac{9}{2} n^2 + 15n - 19 \right)
\]

Proof. Using the definition of vertex-edge Szeged index, we have

\[
S_{sz}(I, (F_n)) = \frac{1}{2} \sum_{i,j=1}^{v} (m_i (v_i v_j) m_j (v_j v_i) + m_i (v_i v_j) n_j (v_j v_i)) + \\
\frac{1}{2} \sum_{i,j=1}^{v} (m_i (v_i v_j) n_j (v_j v_i) + m_i (v_i v_j) n_j (v_j v_i)) + \\
\frac{1}{2} \sum_{i,j=1}^{v} (m_i (v_i v_j) n_j (v_j v_i) + m_i (v_i v_j) n_j (v_j v_i)) + \\
\frac{1}{2} \sum_{i,j=1}^{v} (m_i (v_i v_j) n_j (v_j v_i) + m_i (v_i v_j) n_j (v_j v_i))
\]

\[
r^2 \left[1 \times 1 + (2n + r + nr - 2) \times (r + n(r + 1)) \right] + \\
\frac{1}{2} \left[2(r + 2) \times (r + 1) + (2n + nr - 2r - 4) \times (n - 1)(r + 1) \right] + \\
(n - 2) \left[(r + 2) \times (r + 1) + (2n + nr - 2r - 5) \times (n - 2)(r + 1) \right] + \\
\frac{1}{2} \left[(2r + 3) \times 2(r + 1) + (r + 1) \times (r + 1) \right] + \\
\frac{1}{2} \left[(2r + 3) \times 2(r + 1) + (2r + 2) \times 2(r + 1) \right] + \\
(n - 5) \left[(2r + 3) \times 2(r + 1) + (2r + 3) \times 2(r + 1) \right] + \\
\frac{nr}{2} \left[1 \times 1 + (2n + r + nr - 2) \times (r + n(r + 1)) \right] + \\
r^3 \left(\frac{1}{2} n^3 + \frac{3}{2} n^2 + \frac{3}{2} n + \frac{1}{2} \right) + r^2 \left(2n^2 + 7n - 10 \right) + \\
\frac{5}{2} n^3 - \frac{13}{2} n^2 + \frac{13}{2} n - \frac{55}{2} + \left(n^2 - \frac{9}{2} n^2 + 15n - 19 \right)
\]

Corollary 5.

\[
S_{sz}(F_n) = n^3 - \frac{9}{2} n^2 + 15n - 19.
\]

Theorem 8.

\[
S_{sz}(I, (W_n)) = r^3 \left(- \frac{1}{2} n^3 + \frac{3}{2} n^2 + \frac{3}{2} n + \frac{1}{2} \right) + \\
r^2 \left(3n^2 + \frac{1}{2} n^2 + \frac{13}{2} n - \frac{55}{2} \right) + r \left(\frac{5}{2} n^3 - 6n^2 + \frac{35}{2} n \right) + \left(n^2 - \frac{9}{2} n^2 + 12n \right)
\]

Proof. In view of the definition of vertex-edge Szeged index, we infer

\[
S_{sz}(I, (W_n)) = \frac{1}{2} \sum_{i,j=1}^{v} (m_i (v_i v_j) n_j (v_j v_i) + m_i (v_i v_j) n_j (v_j v_i)) + \\
\frac{1}{2} \sum_{i,j=1}^{v} (m_i (v_i v_j) n_j (v_j v_i) + m_i (v_i v_j) n_j (v_j v_i)) + \\
\frac{1}{2} \sum_{i,j=1}^{v} (m_i (v_i v_j) n_j (v_j v_i) + m_i (v_i v_j) n_j (v_j v_i)) + \\
\frac{1}{2} \sum_{i,j=1}^{v} (m_i (v_i v_j) n_j (v_j v_i) + m_i (v_i v_j) n_j (v_j v_i))
\]

\[
r^2 \left[1 \times 1 + (2n + r + nr - 2) \times (r + n(r + 1)) \right] + \\
\frac{1}{2} \left[2(r + 2) \times (r + 1) + (2n + nr - 2r - 4) \times (n - 1)(r + 1) \right] + \\
(n - 2) \left[(r + 2) \times (r + 1) + (2n + nr - 2r - 5) \times (n - 2)(r + 1) \right] + \\
\frac{1}{2} \left[(2r + 3) \times 2(r + 1) + (r + 1) \times (r + 1) \right] + \\
\frac{1}{2} \left[(2r + 3) \times 2(r + 1) + (2r + 2) \times 2(r + 1) \right] + \\
(n - 5) \left[(2r + 3) \times 2(r + 1) + (2r + 3) \times 2(r + 1) \right] + \\
\frac{nr}{2} \left[1 \times 1 + (2n + r + nr - 2) \times (r + n(r + 1)) \right] + \\
r^3 \left(\frac{1}{2} n^3 + \frac{3}{2} n^2 + \frac{3}{2} n + \frac{1}{2} \right) + r^2 \left(2n^2 + 7n - 10 \right) + \\
\frac{5}{2} n^3 - \frac{13}{2} n^2 + \frac{13}{2} n - \frac{55}{2} + \left(n^2 - \frac{9}{2} n^2 + 15n - 19 \right)
\]

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 2, February - 2015

www.jmest.org

JMESTN42350461

117
$$+ r \left(\frac{5}{2} n^3 - 6n^2 + \frac{35}{2} n \right) + \left(n^3 - \frac{9}{2} n^2 + 12n \right)$$

Corollary 6.
$$S_{\text{v-e}}(W_n) = n^3 - \frac{9}{2} n^2 + 12n$$

Theorem 9.
$$S_{\text{v-e}}(I, (\tilde{F}_n)) = r^3 (4n^3) + r^2 (16n^3 - 30n^2 + 43n - 28)$$
$$+ r(2n^3 - \frac{143}{2} n^2 + 117n - \frac{139}{2}) + (9n^3 - \frac{81}{2} n^2 + \frac{141}{2} n - 42)$$

Proof. By virtue of the definition of vertex-edge Szeged index, we yield
$$S_{\text{v-e}}(I, (\tilde{F}_n)) =$$
$$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} (m_{i,j}(v_{i,j}')) n_{i,j}(v_{i,j}') + m_i(v_{i,j})n_i(v_{i,j})$$
$$+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} (m_{i,j}(v_{i,j}'')) n_{i,j}(v_{i,j}'') + m_i(v_{i,j})n_i(v_{i,j})$$
$$+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} (m_{i,j}(v_{i,j+1})) n_{i,j+1}(v_{i,j+1}) + m_i(v_{i,j+1})n_i(v_{i,j+1})$$
$$+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{r} (m_{i,j}(v_{i,j+1}'')) n_{i,j+1}(v_{i,j+1}'') + m_i(v_{i,j+1})n_i(v_{i,j+1})$$
$$r^2 \left[1 \times 1 + (3n + 2nr - 3) \times (r + (r + 1)(2n - 1)) \right]$$
$$+ \frac{1}{2} (2(2r + 1) \times (2r + 1) + (2nr + 3n - 2r - 5) \times (2n - 2)(r + 1))$$
$$(n - 2)(3r + 2) \times (r + 1) + (2nr + 3n - 3r - 7) \times (2n - 3)(r + 1))$$
$$n^2 r \left[1 \times 1 + (3n + 2nr - 3) \times (2n(r + 1) - 1) \right]$$
$$+ \frac{n - 1}{2} \left[(2nr - 3r + 3n - 7) \times (2n - 3)(r + 1) + (3r + 2) \times (r + 1) \right]$$
$$n - 1 \left[(2nr - 3r + 3n - 7) \times (2n - 3)(r + 1) + (3r + 2) \times (r + 1) \right]$$

$$= \frac{n - 1}{2} \left[(2nr - 3r + 3n - 7) \times (2n - 3)(r + 1) + (3r + 2) \times (r + 1) \right]$$

$$= \frac{n - 1}{2} \left[(3n + 2nr - 3) \times (2n(r + 1) - 1) + 1 \times 1 \right]$$

$$= r^3 (4n^3) + r^2 (16n^3 - 30n^2 + 43n - 28)$$
$$+ r(2n^3 - \frac{143}{2} n^2 + 117n - \frac{139}{2}) + (9n^3 - \frac{81}{2} n^2 + \frac{141}{2} n - 42)$$

Corollary 7.
$$S_{\text{v-e}}(W_n) = 9n^3 - \frac{81}{2} n^2 + \frac{141}{2} n - 42$$

Theorem 10.
$$S_{\text{v-e}}(I, (\tilde{W}_n)) = r^3 (n^3 + \frac{5}{2} n^2 + 2n + \frac{1}{2})$$
$$+ r^2 \left(\frac{19}{2} n^3 - \frac{17}{2} n^2 - 19n - \frac{1}{2} \right) + (r(18n^3 - 34n^2 + \frac{85}{2} n))$$
$$+ (9n^3 - 24n^2 + 24n)$$

Proof. In view of the definition of vertex-edge Szeged index, we deduce
$$S_{\text{v-e}}(I, (\tilde{W}_n)) =$$
$$\frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{n} (m_{i,j}(v_{i,j}')) n_{i,j}(v_{i,j}') + m_i(v_{i,j})n_i(v_{i,j})$$
$$+ \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{n} (m_{i,j}(v_{i,j}'')) n_{i,j}(v_{i,j}'') + m_i(v_{i,j})n_i(v_{i,j})$$
$$+ \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{n} (m_{i,j}(v_{i,j+1}')) n_{i,j+1}(v_{i,j+1}') + m_i(v_{i,j+1})n_i(v_{i,j+1})$$
$$+ \frac{1}{2} \sum_{i=1}^{r} \sum_{j=1}^{n} (m_{i,j}(v_{i,j+1}''')) n_{i,j+1}(v_{i,j+1}''') + m_i(v_{i,j+1})n_i(v_{i,j+1})$$
$$r^2 \left[1 \times 1 + (3n + 2nr - 3) \times (r + (r + 1)(2n - 1)) \right]$$
$$+ \frac{1}{2} (2(2r + 1) \times (2r + 1) + (2nr + 3n - 2r - 5) \times (2n - 2)(r + 1))$$
$$(n - 2)(3r + 2) \times (r + 1) + (2nr + 3n - 3r - 7) \times (2n - 3)(r + 1))$$
$$n^2 r \left[1 \times 1 + (3n + 2nr - 3) \times (2n(r + 1) - 1) \right]$$
$$+ \frac{n - 1}{2} \left[(2nr - 3r + 3n - 7) \times (2n - 3)(r + 1) + (3r + 2) \times (r + 1) \right]$$

$$= \frac{n - 1}{2} \left[(2nr - 3r + 3n - 7) \times (2n - 3)(r + 1) + (3r + 2) \times (r + 1) \right]$$

$$= \frac{n - 1}{2} \left[(3n + 2nr - 3) \times (2n(r + 1) - 1) + 1 \times 1 \right]$$

$$= r^3 (4n^3) + r^2 (16n^3 - 30n^2 + 43n - 28)$$
$$+ r(2n^3 - \frac{143}{2} n^2 + 117n - \frac{139}{2}) + (9n^3 - \frac{81}{2} n^2 + \frac{141}{2} n - 42)$$

$$= r^3 (n^3 + \frac{5}{2} n^2 + 2n + \frac{1}{2})$$

$$+ r^2 \left(\frac{19}{2} n^3 - \frac{17}{2} n^2 - 19n - \frac{1}{2} \right) + (r(18n^3 - 34n^2 + \frac{85}{2} n))$$
$$+ (9n^3 - 24n^2 + 24n).$$
\[
\frac{n}{2} (3r+2) \times (r+1) + (2nr+3n-2r-5) \times (2n-2)(r+1)
\]
\[
+ \frac{nr}{2} [1 \times 1 + (3n+2nr+r-1) \times ((2n+1)(r+1) - 1)]
\]
\[
+ \frac{n}{2} [(2nr-2r+3n-5) \times (2n-2)(r+1) + (3r+2) \times 3(r+1)]
\]
\[
+ n \frac{nr}{2} [1 \times 1 + (3n+2nr+r-1) \times ((2n+1)(r+1) - 1)]
\]

\[
= r^3 (n^3 + \frac{5}{2} n^2 + 2n + \frac{1}{2}) + r^2 (\frac{19}{2} n^3 - \frac{17}{2} n^2 - 19n - \frac{1}{2})
\]
\[
+ r(18n^3 - 34n^2 + \frac{85}{2} n) + (9n^3 - 24n^2 + 24n)
\]

Corollary 8. \(S_{ze}(\bar{W}_n) = 9n^3 - 24n^2 + 24n\).

III. CONCLUSION AND DISCUSSION

Corollary 7. \(S_{ze}(\bar{F}_n) = 9n^3 - \frac{81}{2} n^2 + \frac{141}{2} n - 42\).

Theorem 10. \(S_{ze}(I_r(\bar{W}_n)) =
\]
\[
r^3 (n^3 + \frac{5}{2} n^2 + 2n + \frac{1}{2})
\]
\[
+ r(18n^3 - 34n^2 + \frac{85}{2} n) + (9n^3 - 24n^2 + 24n).
\]

Proof. In view of the definition of vertex-edge Szeged index, we deduce

\[
S_{ze}(I_r(\bar{W}_n)) = \frac{1}{2} \sum_{i=1}^{n} (m_{i,v} (v,v')) n_{i,v} (v,v') + m_{i,v} (v,v') n_{i,v} (v,v')
\]
\[
+ \frac{1}{2} \sum_{i=1}^{n} (m_{i,v} (v,v')) n_{i,v} (v,v') + m_{i,v} (v,v') n_{i,v} (v,v')
\]
\[
+ \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} (m_{i,v} (v,v')) n_{i,v} (v,v') + m_{i,v} (v,v') n_{i,v} (v,v')
\]

3. DISCUSSION

Theorems 1 and 2 establish that the graph with \(n\) vertices, connectivity \(k\), and minimum Hyper-Wiener index is same in the case of vertex and edge-connectivity. One may wonder whether Theorem 1 implies Theorem 2, or vice versa. It appears (at least within the present considerations) that the proofs of these two theorems are independent.

As already mentioned, the 1- and 2-connected graphs with maximum Hyper-Wiener indices are known. The natural question at this point is to ask for \(k\)-connected (\(k \geq 2\)), \(n\)-vertex graphs having maximum Hyper-Wiener index. This problem seems to be much
more difficult, and, at this moment, we cannot offer any solution of it, not even for the case $k=3$.

Another related question is whether n-vertex, k-vertex connected and n-vertex, k-edge connected graphs with maximum Hyper-Wiener index differ at all, and if yes, for which values of k and n.

ACKNOWLEDGMENT

First, we thank the reviewers for their constructive comments in improving the quality of this paper. This work was supported in part by the PHD start funding of the first author. We also would like to thank the anonymous referees for providing us with constructive comments and suggestions.

REFERENCES

