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Abstract—The split Hopkinson bar set-up is a 
mechanical device widely used to test materials at 
high strain rates. Because of the multiple wave 
reflections in bars the test duration is limited to 
some hundreds of micro-seconds. In order to 
increase the test duration and consequently 
extend the use of this machine to intermediate 
strain rate range, we propose here a new design 
of the output bar end in order to reduce wave 
reflections within this bar. Namely, the flat end is 
replaced by a stepped end. This highly reduces 
the amplitude of the reflected wave due to the 
progressive change in the mechanical impedance. 
More precisely, the reflected wave amplitude is 
reduced by 37% using one-step end and by more 
than 50% using two-step end. This result is highly 
promising as it proves the possibility of reducing 
the reflected wave amplitude in Hopkinson bars 
using non-flat ends. 

Keywords—Hopkinson bar; reflected wave; 
mechanical impedance; intermediate strain rate. 

I.  INTRODUCTION (Heading 1) 

The SHB (split Hopkinson bar) has become a 
standard experimental technique for performing tests 
under dynamic loading conditions. However, the use of 
this method is rather limited to high strain rates 
because of multiple wave reflections within the bars 
which yields short test duration. 

Waves reflect at the bars’ ends because of the 
mechanical impedance mismatch between steel and 
air. The output bar end is assumed free of stress. 
Therefore, compressive wave are reflected back into 
the bar as tensile waves and vice versa. In the 
literature, authors were focused on the analysis of 
these multiple reflections. Consequently, they 
proposed wave separation techniques to increase the 
test duration of the split Hopkinson bar [1-14]. 
However, these solutions are mostly based on signal 
processing background which needs important 
mathematical skills.  

Studying airborne ultrasonic transducers, Saffar et 
al. [15-17] proposed the use of progressive change in 
the mechanical impedance in order to reduce wave 
reflections and increase power transmission into the 
air. In this paper, we aim at reducing wave reflections 
in split Hopkinson bar machine by modifying bars 
ends, namely, using stepped ends. This will lead to 
progressive change of the mechanical impedance. 

 

Fig.1. Schematic of the main rod. 

II. METHOD 

A. Problem statement 

We consider an elastic rod of length L1 and radius 
R1  (Fig. 1). In a cross-section x1 , the displacement 
velocity and force Fourier transforms read [18-19]:  

Ũ1(x1, ω) = F1(ω) e−iξ1(ω)x1 + D1(ω) eiξ1(ω)x1, (1) 

Ṽ1(x1, ω) = iω (F1(ω) e−iξ1(ω)x1 + D1(ω) eiξ1(ω)x1),(2) 

and 

Ñ1(x1, ω) = iξ1(ω)A1E1  × 

(−F1(ω) e−iξ1(ω)x1 + D1(ω) eiξ1(ω)x1), (3) 

respectively, where F1(ω) and D1(ω) are the incident 
and reflected waves, ξ1(ω) is the wave dispersion in 
the rod, E1  its Young’s modulus and A1  its cross-
sectional area. If the right bar end is free,  

Ñ1(L1, ω) = 0, (4) 

Thus,  

|D1(ω)|

|F1(ω)|
= 1, (5) 

i.e., the amplitude of the reflected wave D1(ω) is equal 
to the amplitude of the incident wave F1(ω). 

In this paper, we aim at modifying the end of the rod 
in order to reduce the reflected-to-incident waves ratio. 
The above rod or bar is called hereafter the main rod. 
It is considered 1 m in length and 10 mm in radius. 
Two solutions are investigated here: one-step ended 
and two-step ended rods. 

B. Use of one-step end 

In this section, we are first interested in the 
reduction of the reflected wave by using one step at 
the end of the main rod. A schematic of the one-step 
ended bar is given is Fig. 2.The Equations (1)-(3) hold 
for the main or first rod. Likewise, the velocity and 

force in a cross-section x2 of the second bar read: 

http://www.jmest.org/
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Fig.2. Schematic of the one-step ended rod. 

 

Fig.2. Schematic of the two-step ended rod. 

Ṽ2(x2, ω) = iω × 

(F2(ω) e−iξ2(ω)x2 + D2(ω) eiξ2(ω)x2), (6) 

and 

Ñ2(x2, ω) = iξ
2

(ω)A2E2  × 

(−F2(ω) e−iξ2(ω)x2 + D2(ω) eiξ2(ω)x2), (7) 

where ξ2(ω) is the wave dispersion of the second rod, 
E2 its Young’s modulus and A2 its cross-sectional area. 

In order to express the reflected-to-incident waves 
ratio, i.e., |D1(ω)|/|F1(ω)|, the boundary conditions are 
considered. First, the right end of the second bar is 
free. Thus,  

Ñ2(L2, ω) = 0. (8) 

Moreover, we assume the continuity of force and 
velocity at the interface between the two bars. 
Consequently,  

Ṽ1(L1, ω) = Ṽ2(0, ω), (9) 

and 

Ñ1(L1, ω) = Ñ2(0, ω), (10) 

Eliminating F2(ω) and D2(ω) yields:  

D1(ω)

F1(ω)
= e−2iξ1(ω)L1

Z1 cos(ξ2(ω)L2)− i Z2 sin(ξ2(ω)L2) 

Z1 cos(ξ2(ω)L2)+ i Z2 sin(ξ2(ω)L2) 
, (11) 

where Z1 = ξ1(ω)A1E1/ω  and Z2 = ξ2(ω)A2E2/ω  are 
the mechanical impedances of the main and second 
bars. The modulus of this ratio then reads:  

|
D1(ω)

F1(ω)
| = |

Z1 cos(ξ(ω)L2)− i Z2 sin(ξ(ω)L2) 

Z1 cos(ξ(ω)L2)+ i Z2 sin(ξ(ω)L2) 
|, (12) 

The aim of this work is to minimize this ratio. Hence 

this ratio is evaluated for L2 between 0 and 2m and for 

R2  between 0 and 10 mm. The best design 
corresponds to the peer (L2, R2) that gives the lowest 
ratio. 

 

 

Fig.4. Reduction of the reflected wave in terms of the length 
of the second bar 

 

Fig.5. Optimum design with one-step end 

C. Use of two-step end 

Instead of using only one-step end, it is also 
possible to use two-step end (Fig. 3). In this case, the 
Equations (1) to (3) can also be used for the main rod 

 (1
st
 bar). The Equations (6)  and  (7)  can  be used 

to predict velocity and force in any cross-section of the 
2

nd
 bar. Moreover, similar equations can be used for 

the 3
rd

 bar. More precisely, the velocity and force in a 
cross-section x3 of the third bar read:  

Ṽ3(x3, ω) = iω ×  

(F3(ω) e−iξ3(ω)x3 + D3(ω) eiξ3(ω)x3), (13) 

and 

Ñ3(x3, ω) = iξ
3

(ω)A3E3 × 

(−F3(ω) e−iξ3(ω)x3 + D3(ω) eiξ3(ω)x3), (14) 

where ξ3(ω) is the wave dispersion of the third rod, E3 
its Young’s modulus and A3 its cross-sectional area. 

Considering that the right end of 3
rd

 bar is free 
yields:  

Ñ3(L3, ω) = 0. (15) 

Moreover, we assume the continuity of force and 
velocity at the interface between the main and second 
bar and at the interface between the second and third 
bar. Therefore,  

Ṽ1(L1, ω) = Ṽ2(0, ω), (16) 

Ñ1(L1, ω) = Ñ2(0, ω), (17) 

Ṽ2(L2, ω) = Ṽ3(0, ω), (18) 
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Fig.5. Optimum design with a two-step end bar 

and 

Ñ2(L2, ω) = Ñ3(0, ω). (19) 

Eliminating  F2(ω), D2(ω), F3(ω) and D3(ω) yields:  

D3(ω)

F3(ω)
= e−2iξ1(ω)L1 × 

Z1(1+φ2
(ω)e−2iξ2(ω)L2)−Z2(1−φ2

(ω)e2iξ2(ω)L2)

Z1(1+φ2
(ω)e−2iξ2(ω)L2)+Z2(1−φ2

(ω)e2iξ2(ω)L2)

.
 (20) 

where  

φ2(ω) = e−2iξ2(ω)L2
Z2 cos(ξ3(ω)L3)− i Z3 sin(ξ3(ω)L3) 

Z2 cos(ξ3(ω)L3)+ i Z3 sin(ξ3(ω)L3) 
.
 (21) 

and Z3 = ξ3(ω)A3E3/ω  is the mechanical impedance 
of the third bar. In order to get an optimal design that 
minimizes wave reflection in the main bar, the best set 
of (L2, R2, L3, R3) is determined using an optimization 
procedure in order to have the lowest reflected-to-
incidentt waves ratio:  

|
D3(ω)

F3(ω)
| = 

|
Z1(1+φ2

(ω)e−2iξ2(ω)L2)−Z2(1−φ2
(ω)e2iξ2(ω)L2)

Z1(1+φ2
(ω)e−2iξ2(ω)L2)+Z2(1−φ2

(ω)e2iξ2(ω)L2)
|. (22) 

III. RESULTS 

A. Use of one-step end 

Considering (12), the reflected-to-incident waves 
ratio is calculated. Fig. 4 shows this ratio in terms of 
the length of the added step for several values of this 
step radius. Hence, increasing the second bar (the 
added step) length yields to an increase of the ratio. 
This means that the reflected wave is rather for short 
second bars (length lower than 0.5). This what we 
would like to avoid. Fortunately, the reflected-to-
incident waves ratio drops for step lengths longer than 
0.5. Moreover, this ratio drops lower than 1 which 
means that the reflected wave is reduced. The best 
reduction is obtained for a step radius of 5 mm which 
is half the radius of the main bar. In this case, the ratio 
can be as low as 0.63. Thus the optimum design, 
using one-step bar, is to have the radius of the second 
bar equal to 5 mm and its length higher than 0.5 m 
(Fig. 5). Hence, the reflected wave can be reduced by 
37%. 

B. Use of two-step end 

In order to improve the reduction of the reflected 
wave a two-step end is investigated in this section. 

Considering Eqs. (20) and (21), the reflected-to-
incident waves ratio depends on the second and third 
bar lengths and also their radii. An optimization 
procedure was used to obtain the best set of these 
geometrical parameters in order to get the lowest ratio. 
The optimum solution is schematized in Fig. 6. It gives 
a waves ratio of 0.479 which means that the reflected 
wave is reduced by more than 50%. 

IV. CONCLUSION 

In this paper, a new design of the Hopkinson bars 
is proposed. More precisely, the flat end of the output 
bar is replaced here by either one-step or two-step 
end. Using the one-dimensional wave propagation in 
bars, the reflected-to-incident waves ratio is expressed 
in terms of the lengths and radii of the added steps. 
Subsequently, a parametric study and an optimization 
procedure give the best geometrical parameters that 
minimize the waves ratio and consequently the 
reflected wave amplitude. Using one-step end gives a 
reduction of the reflected wave amplitude by 37% 
whereas the two-step end can achieve more than 50% 
reduction of the reflected wave amplitude. These 
results are highly promising. They show that it is 
possible to reduce the amplitude of the reflected wave 
by using non-fat Hopkinson bar end. This work should 
be followed by further investigations in order to 
achieve higher reduction of the reflected wave. 
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