Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

Analysis of Domain Specific Languages for GUI testing:
RSpec and Cucumber for Sikuli

Ivan Evgrafov, dilcom31076gmail.com
Roman S. Samarey, samarev@acm.org
Elena V. Smirnova, evsmirnova@bmstu.ru
Bauman Moscow State Technical University,
Russia

Abstract — This article is devoted to new usage
of the domain specific languages (DSL) for software
with a Graphical User Interfaces (GUI) testing. This
paper’s authors are a developers of the enhanced
software Sikulix, the product which targeted for the
programs with graphical interface testing. They pro-
pose it as a functional basis for DSL. The SikuliX is
considering as an environment for domain specific
languages (DSL and DSEL). The results of two spe-
cialized testing DSL’s estimation are being presented
in this paper: the frameworks Rspec which belongs
to a Domain Specific Embedded Language (DSEL)
group and Cucumber which belongs to a DSL group
accordingly. An estimation results of research are
shown concerning to the implementation of GUI’s im-
age fragments into a application’s testing code being
under the testing. The scientific novelty of the work
is a DSL’s integration with graphic as a part of test-
ing scenario. Such approach allows to simplify tasks
for experts who create tests as well as for subject ex-
perts who are not a programmer but also are able to
check a propriety of the testing results. So new ap-
proach target specifically at program testing with use
of images, we integrated a graphic component into
the DSL to create mapping objects which are going
to be tested.

Keywords — DSL; Ruby; Sikuli; SikuliX; Cucum-
ber; RSpec; image fragment implantation; testing
scenario; automation

I. Introduction

The practice of using the Domain Specific Lan-
guages (DSL) is not new[11, 12]. According to [11] it
is good practice to create a special DSL instead of us-
ing a General Purpose Programming Language (GPPL)
in case of long term software projects. Many computer
languages are Domain Specific rather than General Pur-
pose Language. As authors [11, 12] wrote the Domain-
specific languages (DSLs) are also called application-
oriented, special purpose, specialized, task-specific or
application languages. So-called fourth-generation lan-
guages (4GLs) are usually DSLs for database applica-

Raimund Hocke
Head Developer of SikuliX,
rhocke@me.com, Nidderau, Germany

tions. Little languages are small DSLs that do not include
many features found in General Purpose Programming
languages (GPLs). The testers use the GPPL in case if
there is no time to create special DSL - in case of the short
term software project or if they could not find a proper
DSL, or if they could not create their own DSL. And they
use a domain-specific language (DSL), a computer lan-
guage specialized to a particular application domain in
such a case [17]. This is in contrast to a general-purpose
language (GPPL), which is broadly applicable across do-
mains, and lacks specialized features for a particular do-
main.

First of all we need to discuss the similarity and differ-
ence between the DSL and GPPL. Sometimes it is difficult
to see a sharp edge between DSL and GPPL for a num-
ber of applications. It is obvious that such languages as
Lex, Yacc, TEX, SQL, IDL, HTML are DSLs also. From the
other side the originally created as a DSLs Perl, Python,
Ruby languages are a GPPLs now. Software testing is a
complicated problem. Different software products require
different approaches at the different stages of its devel-
opment and testing. Moreover the involved experts could
be using different techniques and instruments including
with different languages for testing. Usually the develop-
ers use same programming languages for the unit tests
as well as for main program. From the other side some
of the GUI tests could be executed by separate experts
according to customer’s software requirements.

Let us consider the following approaches to the GUI
testing with the aim to find a proper approach which gives
a possibility to be controlled by GUI elements:

* same programming means in use for the applica-
tion and test coding, such approach leads to GUI
elements control dependence of the development
means and the operational systems. Some tools
(Abbot and TestNG) implement this approach to test
Java applications written with Swing library [15];

« an involvement of the operating system specific
events and commands independently of language
being in use, e.g. Ruby language may call methods
from Windows API [6];

« with help of some software to record user's actions as
a script and than to execute the recorded script. The

JMESTN42350420

www.jmest.org 408

dilcom3107@gmail.com
samarev@acm.org
evsmirnova@bmstu.ru
rhocke@me.com

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

languages Rational Functional Tester, Open HMI
Tester, Froglogic Squish etc. do such a way. These
scripts may use the operating system specific events
and commands or some properties of programming
libraries;

* using some special tools to test special domains
like web-applications. This approach is realized by
Selenium[1] - testing framework that allows both
user's actions recording with Firefox and tests writ-
ing in Ruby, Java, Python etc;

+ a visual approach to search and automation use im-
age recognition to detect graphical controls and sim-
ulating mouse and keyboard to perform actions like a
human. This approach is used e.g. in Sikuli [20] and
SikuliX[3]. The last one is being under the develop-
ment of this paper’s authors.

We make the following contribution in this paper:

» we discuss about Domain Specific Languages from
the point of view applicability and base for DSL de-
velopment

» we consider four cases GUI testing and propose
SikuliX IDE as a basic tool for GUI testing using DSLs

* 'RSpec’ examination consider the usage of RSpec
testing framework

» 'Cucumber’ examination consider the usage of Cu-
cumber testing framework

Finaly we review related work, discuss limitations of our
approach and conclude.

In this work the software SikuliX 1.1.0 provides a ba-
sis for the GUI tests creation and the Ruby programming
language support was integrated into it. So the usage
of RSpec and Cucumber DSLs became available in the
development environment to access directly. Taking into
account that the Sikuli can work with any graphic inter-
faces the results of the proposed work could be used both
for desktop testing as well as for web-application testing.
The problem of web applications interfaces testing is im-
portant because of statistic research taken from [8].

All tests which authors worked on have been demon-
strated with use of LibreOffice Writer 4.

II. Domain Specific Languages

Most of the testing software tools mentioned above use
either GPPL or a special scripting language. There is no
strict definition of what is a DSL nowadays, but the main
purpose of this article authors is to provide suitable pro-
gramming abstractions in terms of the domain for end-
users [11, 12, 18]. The development of a DSL for some
application areas increases starting stage costs but it is
compensated later because of simpler code takes less

time for domain experts understanding, writing and de-
bugging it. Moreover there are suggestions to realize a
DSL-based software design [21].

The area of software testing processes includes both
low level decisions like Lava Grammar [16], DSL based
on Java annotation techniques like TestNG over Abbot
library for Swing-based Java application testing [15] and
high level testing tools like DEAL tool [4] that use a GUI for
language definition using all names, labels, switch values
from forms and dialogues. This article will prove that the
RSpec scenario suits better for the low level description
whereas the Cucumber scenario - suits for a little bit more
abstract actions, however the Sikuli limitations do not al-
low to go upper till the level of manipulating the window
as a stand-alone entity without the proper control element
pointment inside of this window.

We have to discuss a difference between DSL and
DSEL (Domain Specific Embedded Language) [11]. The
DSEL is being realized mainly as a subset of GPPL. And
it allows to use all possibilities of GPPL and advantages
of the limited syntax of DSL for an application area. It
may be used both by programmers who use GPPL and
domain experts who use a limited syntax. An example of
DSEL is a framework RSpec [5]. The DSL realizes the
limited by an application area syntax only. An example of
the DSL is a framework Cucumber [9].

DSLs in dynamic languages like Ruby are typically de-
veloped as embedded DSLs that can use the existing tool-
ing and platforms of the dynamic language.

The most convenient GPPL for DSEL development is
Ruby programming language[13]. The main reasons why
authors choose Ruby are flexible syntax and the intention
to make program’s readability as closer as possible to a
natural language (e.g. English). That is, the Ruby ap-
proach for specifying DSLs follows the DSL approach it-
self. Another reason is that the Ruby language is the base
for the testing frameworks RSpec and Cucumber. Tradi-
tional usage of these tools is testing of web-applications
based on the framework 'Ruby on Rails’. But actually both
tools are universal and may be used e.g. for testing mo-
bile applications with a touch screen [10].

DSLs can be defined for technical users, such as soft-
ware developers, testers or architects, as well as for non-
technical users, such as business analysts, managers,
and so on.

lll. GUI testing

The GUI applications testing has the following specific
features. These features are connected to an above men-
tioned approaches, so we will consider few cases.

1. We know the internal structure of the GUI and we
are able to get full access to control elements. This
is used in SeleniumHQ [1] where this tool is able
to control any supported browser via the page ob-

JMESTN42350420

www.jmest.org 409

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

ject model. Note: there is a special type of web-
application testing aimed to check the layout of pages
in different browsers.

2. This case is similar to the previous case: we have an
application written as local desktop application using
Qt, Java-Swing, MFC, .Net or other library. In this
case we need to know the specifics of the library used
for GUI setup and rendering. This scenario is very
complicate for tool development. In many cases the
IDE’s have appropriate tools to support the developer
with testing or there are commercial tools available.

3. In third case we are able to control operating system
events targeted at graphical elements [6]. It is pos-
sible to simulate any action but without any seman-
tics. Though this approach is rather simple, the test
development is very complicate. Moreover there is
an obvious dependence from the concrete operating
system.

4. If the aforementioned approaches (see sec. Intro-
duction) are not appropriate and if we are not able to
control the GUI via a tool or system specific functions,
but we are able to simulate user actions via mouse
and keyboard, then so called visual approach might
fit us. This features are implemented in Sikuli [20]
and SikuliX [3]. Both use image recognition options
supported by the OpenCV library. It has a possibil-
ity to identify GUI components visually by the pixel
contents of rectangular areas on the screen and use
Java AWT Robot to issue mouse and keyboard ac-
tions.

The last case is not simple to realize but it is most uni-
versal for a lot of applications being tested.

Before starting to setup tests we should specify general
elements of the GUI and answer can they be accessed
or manipulated. We should identify elements which have
some common features and which control could be au-
tomatical. These elements should be generalized with
help of utilities making some kind of grouping or templat-
ing. Most of GUI applications use a limited humber of
such standard elements. Non standard GUI elements are
rather rare and they require a deeper analysis for their be-
havior and usage. Classification of elements is demon-
strated in [19]. The tables | and Il show us a minimal GUI
element classification based on the cited works. Table 1
connect GUI elements (column 1) with a category of func-
tions (column 2) and possible user actions which this el-
ement reflects (column 3). The interconnection between
the user actions and its meaning is shown at the table 2,
where the number of action fill in column 1 and its mean-
ing - column 2.

It should be mentioned that the GUI elements in the
same category have similar behaviour and may be tested
by similar methods of user's control simulation.

The specific part of the application’s GUI testing is an
interaction with elements that trigger features and func-
tions of the tested application directly. These elements
may accept input and/or provide output information. Typ-
ical elements are buttons, check boxes, edit fields, com-
boboxes, lists and menus. Though the proper reaction on
these elements actions is different for different applica-
tions, they have many common behaviour features such
as showing tips to the user or changing the interface af-
ter clicks. Such actions and the expected results may be
generalized by programmer. There are some special el-
ements like a map, that allows to interact by sliding, or
like a real graphical elements like shapes of LibreOffice
Draw, that reveal the interactive features to the user. The
process of such actions and/or behaviour sets automati-
cal generalizing sets might get too complicate, so special
elements may would stay with an individual approach.

The elements of the container category testing is not
needed usually in case if the application relies on the
elements provided by some system libraries, the last in
turn are already have been tested on their normalized be-
haviour. But an application’s behaviour acting with these
elements should be tested for sure: e.g. when open-
ing/closing/resizing windows or scrolling it's own content.

Despite of the window’s appearance testing is impor-
tant for users, it is not an aim of this article. The current
implementation of SikuliX does not allow to detect skewed
or differently rendered images or even images, that ap-
pear when they are resized with fewer or additional pixels.
But using the right approach or test workflow, detecting
the GUI defacing should be possible in most cases.

The process of different GUI elements testing may be
similar. Let us consider an example. An application has
two buttons. First one opens a window A. Second one
opens a window B. Both buttons react on the user’s action
the same way and the reaction results are similar too. It
is obvious how to generalize such elements testing. The
only requirement which should be is a failure reporting
meaningful for a user and not for a programmer.

In the next section we will demonstrate two approach:
the RSpec usage based on classification and Cucumber
usage for functional tests as a sequence of simple steps.
Our goal is to compare how these two approaches use
GUI testing and evaluate cases and to answer which one
of DSEL RSpec and DSL Cucumber might be more effec-
tive than the other. The following examples are written in
the SikuliX IDE with Ruby language support using appro-
priate RSpec and Cucumber environment templates [2].

IV. RSpec examination

Now we consider the usage of RSpec [5]. The RSpec
offers a DSEL based on Ruby language to get more read-
able tests than tests written in plain Ruby, by means of an
expectation technique and a convenient form of textual
descriptions of examples and groups.

JMESTN42350420

www.jmest.org 410

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

Table I: GUI elements in typical applications connected to its user actions codes

GUI element Category Possible user actions codes (see meanings at table 2)
Window Container 1-10
Window header Settings 7,8,9
Dialog window Container 1,2,7-10
Toolbar Container 7,9, 10, 11
Button Functional 7,12
Edit field Input 7,8,12,13, 14, 23, 28
Combobox with edit Input 7,12-17, 27, 28
Combobox Container 7,12, 15,16, 17, 27, 28
List item Functional 7,12, 28
Label Output —
Table Container 7,15, 18, 19, 20, 27
Cell of table Input/Output 7,8,9, 12,13, 14, 23, 28
Checkbox Input 24, 25, 28
Radio Input 24,28
Tab switch Container 15, 27
Tab Container 7,9, 28
Popup menu Container 7,12, 15, 28
Menu item Functional 7,28
Status bar Output —
Progress bar Output —
Document Input/Output 7,8,9, 12,13, 14, 23, 27
Text selection Input/Output 7,9,14,21,22,23
Image in the text Input/Output 3, 7-10, 21, 22, 23, 28
Panel splitter Settings 26
Slider Input 26
Scroller Settings 7,26, 27
Map Functional 3,7-10, 27
Table Il: Meaning of user action codes
Act. | Meaning Act. | Meaning Act. | Meaning
1. Open 11. Dock window 20. Change column
2. Close 12. Hover width
3. Change size 13. Select text 21. Copy
4, Expand 14. Type string 22. Cut
5. Collapse 15. Select element from the list 23. Paste
6. Minimize window 16. Expand list 24. Check
7. Click 17. Collapse list 25. Uncheck
8. Double click 18. Click on the cation of row or col- | 26. Slide
9. Right click umn 27. Scroll
10. Move 19. Change row height 28. Select element
JMESTN42350420 www.jmest.org 411

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

The few simple GUI elements testing that activate
a visible change on the screen is realized like a
function in a traditional programming language, where
arguments are images. The RSpec allows to de-
fine a common behaviour for several groups using
shared_examples_for(group_name) method. E.g. we
want to define a group "button”. the elements of group
"button” should respond to click and optionally to hover
events. So for such element testing we need to know how
it looks, what will happen when it would be clicked and op-
tionally what would happens when it is hovered. All simi-
lar elements in the test are described as it_behaves_like(
"button”, image_of element, click effect) if element
doesn’t respond to hover and it_behaves_like("button”,
image_of_element, click_effect, hover_effect) otherwise.
See figure 1.

Another buttons that control the type face of text in the
LibreOffice Writer may be described similarly. But some
of them require a preparation like e.g. text selection.
Therefore we have to select text before. RSpec allows
to use special before/after hooks to perform some prepa-
ration before each "it"-clause executes in the current con-
text. Moreover marking "it” blocks with metadata, one can
choose before which of the scenarios which hooks should
be run. See figure 2.

The elements that implement a feature group of the ap-
plication are usually being placed in containers. These
containers should be opened before. In the RSpec
this may be realized also with use before/after hooks
in shared_context parts. See figure 3. This exam-
ple demonstrates opening the window before a text ma-
nipulation and afterwards confirming the input. Us-
ing include_context here, we add hooks declared in
shared_context into the current context.

The RSpec is a DSEL and it makes tests much closer
to natural English. But at the same time some methods
like shared_context, it, describe use Ruby syntax. So
the RSpec uses the powerful Ruby language features to
describe testing scenarios.

V. Cucumber examination

The Cucumber is a typical DSL which is aimed to non
programmers [9, 7]. The main feature of the Cucumber
is a test scenarios describing with use of the Gherkin lan-
guage, the last one implements a limited subset of nat-
ural language. Hence these scenarios are clear both for
programmer and for domain expert. Tests written with
Cucumber are divided into a pure DSL part that contains
sequence of steps written in Gherkin language and a non
DLS part in Ruby that describes these steps.

The Cucumber needs several files and the SikuliX IDE
can work currently only with one file, because of this we
have prepared a special templates for SikuliX that allows
to use the Cucumber in the SikuliX IDE. An example of
using Gherkin in SikuliX is presented in figure 4.

In this example Given, And, When are special key-
words used to mark the beginning of a step. The rest
of the line after these keywords is processed by a regular
expression in Ruby. See figure 5.

All keywords are the same for any scenarios. Each step
definition may be used in any scenario. Therefore this ap-
proach is equal to testing templates. But these templates
are differ than the templates in RSpec. The main accent
in RSpec is made on templates of groups, but Cucumber
steps contain templates of scenarios. Cucumber allows to
reuse already described steps for the description of new
steps. This approach allows to reduce long sequences of
steps into one step, when such sequence should be run
repeatedly. This means, that we need to do programming
in GPPS at the early stages of the test development. And
it is possible later to use already described phrases in nat-
ural language from the library of step definitions only.

The Cucumber language has before/after hooks and
special tags also. The tags are analogous to metadata
in RSpec but they are a little bit more powerful due to
their ability to perform binary logic operations. The Cu-
cumber allows so called 'Scenario Outlines’ construction
which reduces several scenarios into one. Note the fol-
lowing example contains a table with samples of images.
See figure 6.

Moreover with help of Cucumber it is possible to write
scenario descriptions in another languages than English.
There are dictionaries of keywords in other languages.
Keeping in mind that Ruby works with UTF-8, it is possi-
ble to process phrases on any language available in UTF-
8. To do this we have to prepare special step definitions
for every selected language. The report generated during
execution inherits the language from scenario. An exam-
ple of a Russian language sequence test could be seen
at the figure 7.

JMESTN42350420

www.jmest.org 412

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

Describe template

Z |shared examples for "button" do |pattern, click pattern, hover pattern|
3 it "should respond to click" do
4 click|(pattern)
5 expect (wait (click pattern, I)).to _not raise exception
£ end
i
a8 if hover pattern:
9 it "should respond to hover” do
10 howver (pattern)
11 expect (wait (hover_pattern, I)).to_not raise_exception
1z end
13 end
14 | end
15
la |# Use template
17 |describe "background color button" do
15 it behaves like "button", El 1, , Ueet daoHa
19 | end
20
Figure 1: An example of 'button’ elements checking
1 |# Describe context
2 |shared context "text selection” do
3 before :each, :text select =»> :yes do
4 click(|&&RB&)
5 dragDrop [;&&&&' ,*@@@ @)
£ end
7 end
g
9(# Use context
10| describe "bold text style button", :text _select => :1yes do
11 include context "text selection”
12 it behawves like "button', ﬁ';-.,':, , Momysupren (Ctrl+E)
- - - ample text
13 | end
14
Figure 2: An example of shared examples with preliminary actions
VI. Conclusion GUI testing. Now it is possible to make a conclusion on

the pros and cons about the general approaches.

So we have used two testing frameworks: the Cucum-
ber and the RSpec with the SikuliX IDE as a basis for

JMESTN42350420

www.jmest.org 413

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

1|# Dezacribe container

Z |shared context "clickable container” do |pattern|
3 before :each do

4 click{pattern)

5 end

£ | end

F

|8 Use container

2 describe "text color selection” do

10 include context "text selection”

11 include context "clickable container”, ﬁ v.:
1z describe "white color button” do

13 it behaves like "button”,

14 end

15 | end

1

Figure 3: An example of container activation

1 |Feature: Change text properties
2 Az a user
3 I want to change properties of selected text
4 In order to make my text less or more readable
5 # Background works as hefore hook
& Background:
7 Given text fragment selected
g And menu openesd by click on _.'I"DEMET.:
2
10 Scenaric: user chooses some text case
11 Given submenu opened by hover . :Eerncrp
1z When I click on _ Kak B npeanoxennax
is textis apper case by default.

13 Then I should see This lexlis lowercase by-delzull,
14

Figure 4. An example of Cucumber usage in the SikuliX

There are the RSpec advantages below: 2. The test definition asserts in a form of limited natural

1. The embedded specifications (describe keyword) al-
low to realize tree-like structures having before/after 3.
hooks for GUI containers. It is also possible to gen-
erate tree-like reports after execution.

English.

There is a possibility to realize templates for GUI ele-
ments with a similar behaviour. It allows to minimize
such elements test code.

JMESTN42350420 www.jmest.org

414

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

Transform is used here to construct Pattern obiject from string
CAPTURE PATTERN = Transform /("[0-8]+'.png" |Pattern.*)/ do |patternl|
eval pattern

end

return valus of Transform may be used as a part of a regular expression
Given fclick on (“#{CAPTURE PATTEEN}) i/ do |img]

wait (img, Z)

click(img)
10 | end

12 |Given fopened by hover (W#[CAPTURE PATTERN})/ do [imgl
13 hower | img)
14 | end

16 |Given /~I should see (“#{CAPTURE FATTEERN})3/ do |img]
17 expectiwait (img,2)) .to_not raise exception
158 | end

Figure 5: An example of step definition for Cucumber

1 # Scenario outline description

2 Scenario Outline: user chooses garniture, style and size by clicking
3 Given window opened by click on ﬁ%: CuMBOALL.. |

4 And tab opened by click on |lWpugt

5 And <element> is found by scrolling <area headers

& When I click on <element>

7 And confirm window by click on QK

g Then I should see <sffect img>

9 Examples:

10 |element |area header | effect img I
11 | bdobe Devanagari | | Tapuwrypa | | [perform any actions. |
12 | Mangal | | [Tapuurypa | 1/ThIS shOULD bE InvERTed.] |
15 | MomeknpHEn kypcne | | Cruae ||| THIS TEXT IS APPER CASE BY DEFAULT. | |
14 220 | Kerne ! |[thi5 tEth !
15

Figure 6: An example of Scenario Outline in the Cucumber

There are the Cucumber advantages below: 2. Another languages have been supported by scenario
description including Russian and German.
1. The test scenarios are written in a nearly natural lan-
guage. 3. There is a convenient technique for processing a sim-

JMESTN42350420 www.jmest.org 415

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

FYHRIMA: H3MeHeHHE IapaMeTpoe TeRCTa

JomyoTH BHOISISH (parMeHT TERCTA

M MemO OTHPHTO KIMKOM Ha | Dopmat

1
2
3
4
3 KoHTeroT:
]
7
g
9

Cusmpapuit: EMEpaTe Ina TercTa packIagey "HaR B OpeXdoKsHIH'

10 JomycTiM OTHPHTO IOOMEHD HABSISHMEM Ha

11 EcnmM 8 KEIMEHY Ha

Perncrp

Kak B npegnomennax |

This textis apper case by default.]

1z To a momxeH BMOETL |This lexlis lowercase by-delaull.
This should be Inverted.

13

Figure 7: An example of Scenario for the Cucumber in Russian

ilar GUI elements in the same container.

4. The tags are available and the logical operations on
them are possible also.

Both RSpec and Cucumber support different forms and
format of testing reports (html, xml, json), both may be
used with continuous integration system.

So RSpec is more appropriate for pure programmers
and English speaking experts. And Ruby code is visible
at the primary level.

The Cucumber language allows to read and write test-
ing scenarios and to generate report in many natural lan-
guages. Hence the DSL part of Cucumber (Gherkin lan-
guage) is more appropriate for pure domain experts and
customer representatives. But Cucumber is more restric-
tive about code generalization than RSpec due to con-
taining all scenarios in one feature file inside one context.
Therefore you need to mark scenarios with the same tags
if you want to use some specific hooks. It is possible to
add the background section without tags. A background
is much like a scenario in RSpec containing a number
of steps, but it runs before all other scenarios. A disad-
vantage of Cucumber is a lack of hierarchical contexts,
which means, that we have to describe tabs and controls
for each one separately. The Cucumber is convenient
for step definitions, but the usage of it for GUI compo-
nents description (like separate buttons, checkboxes, ra-
dios etc.) is rather complicated than easy.

VIl. Future work

The first one of the several problems connected to de-
scribed approach is a technical problem. The SikuliX IDE

allows to execute any Ruby scripts, but most of testing
frameworks require special forms of execution. Exam-
ples:

+ A framework like 'Cucumber requires a direc-
tory structure with appropriate feature— and step—
definition files. Currently it is only possible to emu-
late this structure. Full support in the SikuliX IDE is
not available yet.

* Frameworks 'RSpec’, 'Given/When/Then’ require a
direct access to a Ruby script and the execution via
special commands. But the SikuliX IDE controls the
execution of Ruby scripts for own purposes, which
means that some features are not usable currently.

So it is possible to use the SikuliX as an API already
now, but the support for testing frameworks in the IDE
needs some specific customizations (e.g. the above men-
tioned experimental templates) and not all features are
fully usable in all cases. The full support for testing frame-
works would need specific modifications and additions for
each testing framework.

Both RSpec and Cucumber are powerful testing frame-
works based on DSEL/DSL. It is possible to realize a li-
brary of templates for them. There is an example of mod-
ification done for the testing library SeleniumHQ [1] with
Capybara [14] project that realizes a DSEL offering more
human readable forms of SeleniumHQ functions. The
Capybara may also be used with RSpec and Cucumber.

This article authors are going continue to develop the
Sikulix software, an enhanced specification for future
work is ready, and authors plan to release new version of
SikuliX as a basis to support the developement and the

JMESTN42350420

www.jmest.org 416

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

execution of tests using RSpec and Cucumber - SikuliX
version 2 in 2015.

References

(1]

(2]

(3]

(4]

[3]

(6]

[7]

8]

9]

[10]

SeleniumHQ Browser Automation.
//seleniumhq.org/, 2008.
23-July-2014].

http:
[Online; accessed

Examples of SikuliX using with testing frame-
works. https://github.com/rssdev10/
sikulix-ide-templates, 2014. [Online; accessed
23-July-2014].

SikuliX powered by RaiMan. http://sikulix.com/,
2014. [Online; accessed 23-July-2014].

Michaela Bacikova, Jaroslav Poruban, and Dominik
Lakatos. Defining domain language of graphical user
interfaces. In José Paulo Leal, Ricardo Rocha, and
Alberto Simoes, editors, SLATE, volume 29 of OA-
SICS, pages 187-202. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2013.

D. Chelimsky, D. Astels, B. Helmkamp, Z. Dennis,
D. North, and A. Hellesoy. The Rspec Book: Be-
haviour Driven Development With Rspec, Cucum-
ber, and Friends. Pragmatic Bookshelf Series. Prag-
matic Programmers, LLC, 2010.

I. Dees. Scripted GUI Testing with Ruby. Prag-
matic Bookshelf Series. Pragmatic Programmers,
LLC, 2008.

lan Dees, Matt Wynne, and Aslak Hellesoy. Cucum-
ber Recipes: Automate Anything with BDD Tools
and Techniques. Pragmatic Programmers. Prag-
matic Bookshelf, 2013.

Vahid Garousi, Ali Mesbah, Aysu Betin-Can, and
Shabnam Mirshokraie. A systematic mapping study
of web application testing. Information and Software
Technology, 55(8):1374 — 1396, 2013.

A. Hellesoy and M. Wynne. The Cucumber Book:
Behaviour-Driven Development for Testers and De-
velopers. Pragmatic Programmers. Pragmatic Book-
shelf, 2012.

Marc Hesenius, Tobias Griebe, and Volker Gruhn.
Towards a behavior-oriented specification and test-
ing language for multimodal applications. In Pro-
ceedings of the 2014 ACM SIGCHI Symposium on

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Engineering Interactive Computing Systems, EICS
‘14, pages 117-122, New York, NY, USA, 2014.
ACM.

Paul Hudak. Domain specific languages. In Chapter
3 in Handbook of Programming Languages, Vol. llI:
Little Languages and Tools. MacMillan, Indianapolis,
1998.

Marjan Mernik, Jan Heering, and Anthony M.
Sloane. When and how to develop domain-specific

languages. ACM Comput. Surv., 37(4):316-344,
2005.
Russ Olsen. Building a DSL in Ruby - Part

I. http://jroller.com/rolsen/entry/building_
a_dsl_in_ruby, 2006. [Online; accessed 23-July-
2014].

M. Robbins. Application Testing with Capybara.
Community experience distilled. Packt Publishing,
2013.

Alex Ruiz and Yvonne Wang Price. Test-driven gui
development with testng and abbot. /EEE Software,
24(3):51-57, 2007.

Emin Gun Sirer and Brian N Bershad. Using produc-
tion grammars in software testing. In ACM SIGPLAN
Notices, volume 35, pages 1-13. ACM, 1999.

Diomidis Spinellis. Notable design patterns for do-
main specific languages.

Hui Wu, Jeff Gray, and Marjan Mernik. Grammar-
driven generation of domain-specific language de-
buggers. Softw. Pract. Exper., 38(10):1073—-1103,
August 2008.

Xuebing Yang. Graphic User Interface Modelling
and Testing Automation. PhD thesis, School of Engi-
neering and Science Victoria University, Melbourne,
Australia, May 2011.

Tom Yeh, Tsung-Hsiang Chang, and Robert C.
Miller. Sikuli: using gui screenshots for search and
automation. In UIST, pages 183—-192, 2009.

Uwe Zdun. A {DSL} toolkit for deferring architectural
decisions in dsl-based software design. Information

and Software Technology, 52(7):733 — 748, 2010.

JMESTN42350420

www.jmest.org

a7

http://seleniumhq.org/
http://seleniumhq.org/
https://github.com/rssdev10/sikulix-ide-templates
https://github.com/rssdev10/sikulix-ide-templates
http://sikulix.com/
http://jroller.com/rolsen/entry/building_a_dsl_in_ruby
http://jroller.com/rolsen/entry/building_a_dsl_in_ruby

	Introduction
	Domain Specific Languages
	GUI testing
	RSpec examination
	Cucumber examination
	Conclusion
	Future work

