Design a Low Cost 1000 Watt Power Amplifier for Rural Nigeria

Arobieke O. Oluwole
Electrical Engineering Department, Rufus Giwa Polytechnic, Owo.
Email:- oluarobieke@yahoo.com

Abstract

The need to get cheap and workable equipment to the rural areas cannot be overemphasised. The rural area of Nigeria represents more than half of the population. As enlightments grows, so also is the demand for "the good things of life". The opportunity to use a rugged and durable, high quality amplifier is the brainwork behind this paper.

Keywords-OP-Amp, resistor, capacitor, power, Nigeria

INTRODUCTION

1.0DESIGN OF 1000 WATT POWER AMPLIFIER

It is known from the intention that this paper is foe 1000 watts. So the output power is 1000 watts. This will be supplied from a rectified power supply of 12 V with a projected load of 8Ω

The various stages to be equally designed are the power supply, amplifying and the output units.

POWER SUPPLY UNIT

This stage is very important because it involves the conversion of the alternating current (A.C.) to direct current (D.C.) form required by the various stages within the system. It consists of a transformer, rectifier and a filter. It has a step down transformer with 45 volts output voltage.

TRANSFORMER CIRCUIT

For the transformer (fig 1) let us assume that the primary winding consist of 500 turns with an input voltage of 220 V . The output voltage is 45 V . The desired turns at the secondary winding will be determined by the transformed ratio.

Fig. 1: Transformer
$\frac{V_{S}}{V_{P}}=\frac{N_{S}}{N_{P}}$
Where
$\mathrm{V}_{\mathrm{S}}=$ Secondary Voltage
$V_{P}=$ Primary Voltage
$N_{S}=$ Secondary Turns
$N_{P}=$ Primary Turns

$$
\frac{45}{220}=\frac{N_{S}}{500} \Rightarrow \frac{500 \times 45}{220}=N_{S}=102 \text { Turns }
$$

So the secondary winding consists of 102turns.

RECTIFYING CIRCUIT

The rectifying diode voltage (peak) $=50 \mathrm{~V}$
Power $(P)=1000 w$
Voltage (V) $=50 \mathrm{~V}$
$\mathrm{P}=\mathrm{VI}$
Where I is the current

$$
\therefore I_{(\max)}=\frac{P}{V_{(\max)}}=\frac{400}{50}=8 A
$$

Fig. 2: Rectifying Circuit
The diode rating that can accommodate the required current without heating is IN5400

FILTERING CIRCUIT

The smoothing or filtering circuit, the output of two capacitors will pass through the resistors that are connected in parallel. To calculate the value of the capacitors used in the filtering circuit.

$$
\begin{aligned}
& V_{\text {r.m.s. }}=45 \mathrm{~V} \\
& \mathrm{~V}_{\text {Peak }}=\mathrm{V}_{\max }=\sqrt{2} \times \mathrm{V}_{\text {rms }}=\sqrt{2} \times 45=63.63 \mathrm{~V} \\
& \mathrm{~V}_{\text {d.c }}=0.636 \times 63.63=40.5 \mathrm{~V} \\
& \mathrm{~V}_{\text {ripple }}=63.63-40.5=23.13 \mathrm{~V}
\end{aligned}
$$

$$
V_{\text {ripple }}=63.63-40.5=23.13 \mathrm{~V}
$$

$\mathrm{V}_{\text {ripple }}($ peak to peak $)=2 \times 23.13=46.26 \mathrm{~V}$
The required ripple voltage should be 5% peak to peak

$$
=\frac{5}{100} \times 46.26=2.31 \mathrm{~V}
$$

Capacitance
$=\frac{T \times V_{\max }}{\text { Projected Load } \times \text { Required Ripple Voltage }}$

Where $T=$ period $=1 / f$ where F is the frequency $=$ 50HZ

$$
\therefore T=\frac{1}{50}=0.02 \operatorname{Sec}
$$

Projected load $=8 \Omega$
Assuring that $R_{1}=R_{2}=1 \mathrm{k} \Omega$
Capacitance $=\frac{0.02 \times 63.63}{2.31 \times 8}=\frac{1.2726}{18.48}$
$=6886 \times 10^{-6} F=6886 \mu F$
And $\mathrm{C}_{1}=\mathrm{C}_{2}=6886 \mu \mathrm{~F}$
The reactive value is $6800 \mu \mathrm{~F}$ which is capable of performing the function of the calculated value.

Fig. 3: Filtering Circuit
The secondary voltage is 45 V for one side of the winding. Therefore, the capacitor rating voltage will be $45 \times 2=90 \mathrm{~V}$. So, a capacitor $6800 \mu \mathrm{~F} 80 \mathrm{~V}$ rating will be preferred for efficient filtering and operation. The resistors R_{1} and R_{2} of Fig. 3 are assumed to be $1 \mathrm{k} \Omega$

Fig. 4: Complete Power Supply Stage

AMPLIFIER STAGE

It makes use of an OP- Amp (JRC 4558). It is used due to its high gain and minimum distortion in the audio frequency range. For efficiency in the system, the gain should be between 10 dB and 20 dB

Assume voltage gain $=20 \mathrm{~dB}$
For effectiveness the values of resistor lies between $10 \mathrm{k} \Omega$ and $200 \mathrm{k} \Omega$.

Fig. 5: Amplifier Circuit
Assuming that R_{4} from fig. 5 above $=56 \mathrm{k} \Omega$

$$
\begin{aligned}
& \text { And } C=\frac{1}{2 \pi f X_{C}} \text { where } f=50 \mathrm{~Hz}_{\mathrm{z}} \\
& C=\frac{1}{2 \times 3.142 \times 56 \times 10^{3} \times 50}=\frac{10^{-5}}{56}=0.1 \mu \mathrm{~F}
\end{aligned}
$$

To calculate the value of the feedback resistor $\left(\mathrm{R}_{\mathrm{f}}\right)$, we have

$$
\text { Gain }=\frac{R_{F}}{R_{i n}}
$$

$$
20=\frac{R_{F}}{56} \Rightarrow R_{F}=20 \times 56 \times 10^{3}=1120 \mathrm{k} \Omega
$$

The preferred and readily available value is $1200 \mathrm{k} \Omega$. Also, for the variable resistor at the input terminal a $100 \mathrm{k} \Omega$ resistor is used for efficiency.

OUTPUT STAGE

This stage of the power amplifier makes use of power transistors (MOSFETS). There are eight (8) MOSFETs in all, that is, 4 per channel. There are two P - channel MOSFET (IREP250N) and two N channel MOSFET (IREP9240).

Fig. 6: Power Amplifying Stage
The minimum voltage that must be applied to the output stage for it to give the required output is given by.

$$
V_{D D}=V_{D}+I_{D} R_{L}
$$

Where
$V_{D}=$ Drain Voltage
$I_{D}=$ Drain Current
$R_{L}=$ Load Resistor
Drain Voltage $=40 \mathrm{~V}$ and
power per channel $=200 \mathrm{~W}$
from $P=I V$
$I=\frac{P}{V}=\frac{200}{40}=5 A$
Load Resistor $=8 \Omega$
From $V_{D D}=V_{D}+I_{D} R_{L}$
$V_{D D}=40+(8 \times 5)$
$V_{D D}=40+40=80 \mathrm{~V}$
$V_{P P}$ is the peak to peak voltage swing at the output of the power amplifier
$\therefore P_{r . m . s}=\frac{V_{P P}^{2}}{2^{2} R_{L}}$
$V_{P P}^{2}=\frac{P_{r, m . s} \times 2^{2} R_{L}}{\sqrt{P_{r . m . s} \times 2 R_{L}}}=\sqrt{400 \times 2^{2} \times 8}=\sqrt[2]{8 \times 400}=\sqrt[2]{3200}=113.14 \mathrm{~V}$
And $I_{P P}=$ peak to peak current delivered to the loudspeaker
$I_{P P}=\frac{V_{P P}}{2 R_{L}}=\frac{113.14}{2 \times 8}=\frac{113.14}{16}=7.07 \mathrm{~A}$
Power delivered by each channel is given by
$\mathrm{P}_{2}=\mathrm{P}_{1}=\mathrm{VI}$
Where $\mathrm{V}=40 \mathrm{~V}$ and $\mathrm{I}=5 \mathrm{Amps}$
$P_{1}=P_{2}=40 \times 5=200 \mathrm{~W}$
\therefore Total Power delivered by the two channels is given by
$P_{T}=P_{1}+P_{2}=200+200=400 \mathrm{~W}$.
Table 1
BILL OF ENGINEERING MEASUREMENT AND EVALUATION (BEME)

FOR POWER AMPLIFIER

S/N	Component	Quality	Rate (\mathbf{N})	Amount $\mathbf{(N)}$
1.	Transformer	1	1000	1000
2.	Diode IN 5400	4	50	200
3.	Power switch	1	70	70
4.	Capacitor $8600 \mu \mathrm{~F} \mathrm{80V}$	2	300	600
5.	Capacitor 0.1 $\mu \mathrm{F}$ 50V	4	300	1200
6.	Vero Board	1	100	100
7.	Soldering lead	30 FT	15	150
8.	AC power cord	1	70	70
9.	Indicator	2	40	80
10.	JRC 4558	2	40	80
11.	MOSFET	8	100	800
12.	Fuse	8	100	800
13.	Variable Resistor	1	50	50
14.	Fixed Resistor	22	20	440
15.	Heat sink	2	100	200
16.	Fan	1	600	600
17.	Air let grill	2	150	300
18.	AC Socket	1	120	120
19.	Knobs	2	70	140
20.	Housing	1	2500	2500
21.	Edge Rubber	4	50	200
22.	Rug covering		300	300
23.	Screw	34	10	340
24.	Connecting wire	15 ft	10	50
25.	Speaker Terminal Socket	4	50	200
26.	Miscellaneous		1000	1000
	Total			11,590

CONCLUSION

Looking closely at the attendant cost (Table 1); it can be seen to be about one third of the price of the equivalent 1000 watts amplifier in the open market.

REFERENCES

[1]Bruce Carter and Thomas R. Brown (2001) Handbook of Operational amplifier applications. Texas Instruments Incorporated
[2]Efstathiou C Analog Electronics: Basic Circuits of Operational Amplifiers
[3]Lee, Thomas H. (November 18, 2002). "IC OpAmps Through the Ages". Stanford University

Handout \#18: EE214 Fall 2002.[4]Lu, Liang-Hung. "Electronics 2, Chapter 10". National Taiwan University, Graduate Institute of Electronics Engineering. Retrieved 2014-02-22.[5]Millman J Microelectronics: Digital and Analog Circuits and Systems, McGraw-Hill, 1979, ISBN 0-07-042327-X, pp. 523-527
[6]Operational Amplifier Basics www.electronicstutorials.ws/opamp/opamp_1.html

Fig. 7: Complete Circuit Diagram of 400W Power Amplifier

