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Abstract—In this paper 18 different methods to 
estimate the number pi are presented. Some of the 
methods are the results from simple combinations 
of other classical approaches. The combinations 
usually generate faster convergence to pi. Among 
the presented methods some of them can be used 
to construct approximate squaring the circle. 

Keywords—algorithm, area, circle, perimeter, 
polygon, quadrature, number pi, approximation 

I. INTRODUCTION 

As it is well known a mathematical universal 
constant π represents the ratio of a circle's 
circumference to its diameter. (π =3.141592+.). 
Archimedes of Syracuse around 255 B.C. calculated 
the perimeters of inscribed and circumscribed regular 
polygons of 6, 12, 24, 48, and 96 sides to determine 
upper and lower boundary for the perimeter of the 
circle [1, 2]. He developed a method to estimate 
perimeters and by this approach to find bounds for π 
value. Using two 96 side regular polygons he provided 
the following estimations for π, 

 

We have 96*sin(π/96) < π < 96*tan(π/96). 

 

Fig. 1. The mathematical constant π. 

II. METHODS 

Here we consider simple methods to estimate π. 
Some of these methods are very well known but still 
we are able to improve even these traditional formulae. 
We assume that our circle has radius 1. As a main 
goal of this work is to calculate π, we consider half of 
the circle when calculate its perimeter. Thus rather 
than estimate 2πr, we get the value πr or just π, if r=1. 
We are using the following notation x= π/n, where n is 
the number of sides in the considered regular polygon. 
In practice x value represents angle. For example in 
the case of an equilateral triangle (n=3), we have x=60 
degrees. We will use the notation M<X>, X=number 
used to identify the proposed methods. Table 1 
summarizes all of them and provides short 
descriptions and used formula. Also it lists the results 
generated by these methods for n=3, i.e. for an 
equilateral triangle, where π~M<X>*3. 

Algorithms of Archimedes, Snell, and Huygens 

Let pn and Pn be the perimeters of the inscribed 
and circumscribed n –gon in the circle. Using simple 
trigonometry we are able to derive the following 
formulae – two methods: M1 = pn/2=n*sin(π/n) and 
M2 = Pn/2=n*tan(π/n). We have the following 
Maclaurin series for the used trigonometric functions 
(i.e. sin x and tan x, where x=π/n), 

 

Willebrord Snell (Snellius) [3] observed that the 
perimeter of the inscribed polygons of n sides 
approaches π twice as fast as the perimeter of the 
circumscribed. This fact and many others related to 
the circle were proved by Christian Huygens in 1654 
[4]. Using this information we define new method by 
the formula M4= M1+(M2-M1)/3. This simple 
combination eliminates the terms with x to power 3 in 
the corresponding Maclaurin series. The obtained 
method generates values which converge faster to π, 
than M1 or M2. 

Chakrabarti and Hudson [5, 6] proposed method 
M6 based on the three methods M1, M2, and M3. 
Their method has the corresponding Maclaurin series 
of the following form, 

 

As we see in this case the lowest power of x is 7, 
thus the method converges faster than their three 
components, where in each x is in power 3. 
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Snell and Huygens developed another approach. 
They estimated the length of the arc (rectification) 
which corresponds to the angle x. They provide two 
formulae-methods to obtain overestimated (M7) and 
under estimated (M8) values for the constructed 
rectification of the arc: 

 

Szyszkowicz [7] proposed to combine these two 
methods and as the result to produce faster method. 
His construction has the following simple form 

 

This method has the following Maclaurin series 

 

This method is faster than M6 proposed by 
Chakrabarti and Hudson (both methods have x

7
). 

A. Algorithms of Archimedes, Snell, and 
Huygens 

In the year 1800 Gauss’ teacher Pfaff discovered 
the algorithm to iteratively realize doubling of side of 
n-gon in Archimedes’ approach. We may start with 
a0=2sqrt(3) and b0=3, which correspond to the original 
Archimedes’ technique, where he used a hexagon 
(k=6). Let an and bn be the perimeters of the 
circumscribed and inscribed k -gon and an+1 and bn+1 
the perimeters of the circumscribed and inscribed 2k –
gon, respectively. Thus the next step of the iteration 
doubles the number of sides. 

 

A German mathematician Heinrich Dörrie improved 
this process (Problem #38 in his book [7]) in such 

sense that he provided narrower interval  which 
sandwiches π. Dörrie generated his sequence using 
these elements a and b from Pfaff’s method. Here, in 
addition we explicitly write these formulae in the 
corresponding trigonometric terms 

 

It is interesting that the method M8 was first time 
proposed in the XV century by the cardinal Nicholas of 
Kues (1401 – 1464) also known as Nicolaus Cusanus 
and Nicholas of Cusa. This method was later (XVII 
century) developed again by Snell and Huygens. Here 

Szyszkowicz proposed to combine two values A and 
B generated by Dörrie’s sequence and as a new 
approximation he defined the method M10=B+(A-
B)/5=M8+(M9-M8)/5. The method has the following 
Maclaurin series, 

 

Table 1 shows other methods which have high 
order of convergence. Higher power x means better 
speed, as x=π/n is small number. Comparing the 
presented numerical results we conclude that the 
method called Newton-Szyszkowicz (M16) provided 
the highest accuracy. It’s justified by its corresponding 
Maclaurin series 

 

Table 1. The methods and numerical results. 

Description Method: π~n*M<X> n=3 

sin(x), arc M1 2.598076 

tan(x),arc, area M2 5.196152 

sin(2x)/2, area M3 1.299038 

SnellHuyg M4=M1+(M2-M1)/3 3.464101 

SnellHuyg M5=M2+(M3-M2)/3 3.897114 

ChakHudson M6=(32M1+4M2-6M3)/30 3.204293 

Snell, arc M7=(2 cos x/3+1) tan x/3 3.144031 

SnellDörrie M8=3sin x/(2+cos x) 3.117691 

A- Dörrie M9=(M2*M1*M1)^1/3 3.273370 

SzyszDörrie M10=M8+(M9-M8)/5 3.148827 

Newton M11 3.139342 

Castellanos M12 3.141310 

Szyszkowicz M13=M7+(M8-M7)/10 3.141397 

SzyszChHud M14=M13+(M6-M13)/217 3.141687 

NewtSzyszDö M15=M11+(M10-M11)/3 3.142503 

NewtSzysz M16=(54M13-5M11)/49 3.141607 

NewtChHud M17=M11+(M6-M11)/21 3.142435 

SnellChHud M18=M6=0.2(8M4-3M5) 3.204293 

Note: M11=sin(x)(14+cos(x))/(9+6cos(x)); 
M12=sin(x)x(187+24cos x – cos 2x)/(10+90cos x). We 
have the following Maclaurin series for M11 and M12, 

 

B. Squaring the circle - geometrically interpreted 
methods 

Archimedes’ approach allows to construct an 
approximate squaring the circle. In case of the 
methods M1 and M2 it is easy to obtain segments 
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which are close to the value πr. For example, for the 
triangle (n=3), the approximated segment is close to 
πr/3. As we see from Table 1, in this case the 
approximation is not very accurate. We still can create 
the segment 3 times πr/3 (with π approximated) and 
build a rectangle of sides close to πr and r. A classical 
geometrical construction allows to squaring this 
rectangle. The obtained square will approximate the 
circle. In similar way the methods M7 and M8 may be 
used. They will create more accurate approximation to 
the circumference. The best method among presented 
here to use in squaring the circle, is Szyszkowicz’s 
approach (M13) [7], and as we see from the table 
already for the triangle (n=3) this method results with 
π=3.14139… for n=6 we have π=3.14158975. 

Fig. 2. The results from methods M2, M3, and M5. 

We may use Aitken’s transformation to generate 
better approximation to π. For a given sequence {xn} 
generated by one of the presented methods, we 
produce new sequence A(n) using the following 
formulae [9]. (For example, the method M11 gives 
3.13934209 (n=3, triangle), 3.14121486 (n=4, 
square), 3.14149622 (n=5, pentagon), and Aitken: 
3.141546). M13 alone for n=5 gives 3.14158392. 

 

Fig. 3. The simplest regular polygons (equilateral 
triangles) used to approximate a circle. 
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