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Abstract—Self-synchronous theory of vibrating
system driven by three motors in the same
direction is studied through mathematical
analysis in this paper. The mathematics model of
electromechanical coupling of the vibrating
system is  established, and the self-
synchronization and stability conditions of the
vibrating system are deduced by using Hamilton
principle. The characteristic of vibration
synchronization was studied by computer
simulation. The vibrating system can implement
stable operation of vibration synchronization
when the simulation program is based on the self-
synchronization and stability conditions of
synchronous  operation deduced in the
mathematical analysis. Simulation results to the
vibrating system validate the correctness of the
mathematical analysis, it provides theoretical
basis for the design of the vibrating system driven
by several motors.
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I.  INTRODUCTION

Scientific studies show that macroscopic dynamic
behavior of complex system not only depends on
motional characteristics of each subsystem, but has
close relationship with interaction among subsystems.

The change of motional characteristics and forms
of complex system can be affected directly by
interaction among the subsystem’s motion, it can result
in new motional structure. To study the characteristics
of interaction among the subsystem’s motion and the
influence of the interaction among the subsystem’s
motion to dynamic behavior of complex system is
important content of complex system science.

Zhang Yimin presented a generalized probabilistic
perturbation finite element method and employed the
method to solve the response analysis of multi-degree-
of -freedom nonlinear vibrating systems with random
parameters and vector-valued and matrix-valued
functions [1].

Zhang Tianxia studied coupling effect in a
synchronous vibrating system, he derived a differential
equation with an analytical method of nonlinear
vibration for the coupling motion of two eccentric rotors
to describe mathematically the coupling parameters of
the system. Then he studied the synchronization
development course of two eccentric rotors in depth,
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and deducted the necessary coupling conditions to for
a synchronization state [2].

Zhao Chunyu analyzed the dynamic characteristic
of a vibrating system with two-motor drives rotating in
the reverse direction by using the dynamic theory and
established the equations of frequency capture, he
obtained the conditions of implementing frequency
capture and the equations of calculating capturing
frequency and the phase [3].

Wang Degang studied the dynamic coupling
feature of a vibrating system driven by two motors in
the same direction, converted the problem of
synchronization into that of existence and stability of
zero solution for the equation of frequency capture,
and then obtain the condition of frequency capture and
that of stable self-synchronous operation [4].

These studies mostly analyzed motional rules of
synchronous vibrating system driven by two motors,
few studies analyzed systems driven by three or more
motors.

To large vibrating machine, it is not fit to adopt two
motors to drive vibrating system because of the large
structure. It should adopt three or more motors to drive
based on the structure need. There are no effective
methods to analyze the self-synchronization and
stability conditions of synchronous operation of the
vibrating system driven by three or more motors.
Because of complexity of dynamic model and
restriction of mathematics method available, the
research to self-synchronization and stability
conditions of synchronous operation of the vibrating
system is carried out mostly around approximate
synchronous state. There are no further studies to
nonlinear dynamic mechanism of synchronous system
and synchronous stability problems.

In this paper, the self-synchronous theory of the
vibrating system driven by three motors is studied
through mathematical analysis in depth, the self-
synchronization and stability conditions of synchronous
operation of the vibrating system are deduced by using
Hamilton principle. Simulation results to the vibrating
system verify the correctness of the mathematical
analysis.

Il. SELF-SYNCHRONOUS THEORY OF VIBRATING
SYSTEM DRIVEN BY THREE MOTORS

A. Mathematical Model of a Vibrating System
Driven by Three Motors

Www.jmest.org

JMESTN42350405

303


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

Fig. 1. Dynamic model of a vibrating system driven by
three motors in the same direction

Dynamic model of a vibrating system driven by
three motors in the same direction is shown in Fig. 1.
0" in the figure is the system centroid, O" and O are
its synthesized centroid. Oxy is fixed coordinates,
OX'y" is moving coordinates. O'O" is the distance
from synthesized centroid to system centroid,
0'0"=1,. 0,, 0,. O, are rotative centers of the three
exciting motors, and they are in one lines. O'O.=l,
0'02=l, 0'03=l,.

In working process, the three motors rotate in
counter-clockwise direction. The three motors which
supply by the same power drive three eccentric lumps
each other. The three eccentric lumps excite the
system to vibrate. The motions of the system are
vibrations in horizontal direction ¥, in vertical direction y
and in rocking direction y (y <<1) [5-8]. With aid of the
Langrange’s equations, in addition, choosing X, y, v,
1, 92 and @3 as variable parameters, the vibration
equation can be established through the expression of
kinetic energy and potential energy of the system.

The kinetic energy expression of the vibrating
system is shown in (1).
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where

X, y and y are the displacements of the vibrating
body in the directions x, y and y, respectively,

X, ¥,w are speeds of the vibrating body in the
directions x, y and y, respectively,

mo is mass of the vibrating body (not including the
three eccentric lumps),

m; (i=1, 2, 3) are masses of the three eccentric
lumps, respectively,

ri(i=1, 2, 3) are eccentricities of the three eccentric
lumps, respectively,

¢, (i=1, 2, 3) are angular displacements of the three
eccentric lumps, respectively,

@, (i=1, 2, 3) are angular velocities of the three
eccentric lumps, respectively,

Jo is the moment of inertia of the vibrating body (not
including the three eccentric lumps),

J, (i=1, 2, 3) are the moments of inertia of the three
eccentric lumps encircled respective rotative centers.

The potential energy expression of the vibrating
system is shown in (2).

1 1 1
V=2kx*+=ky +=k y’ 2
5 XS KY DRy (2)
where k,, ky, and k,, are the stiffness of spring in the
directions x, y, y, respectively.
The expression of energy dissipate function of the
vibrating system is shown in (3).
D=2 fX 420,y 4 2 2 g, )
2 2’ 27 2
1,.,. . 1., . )
=5 F =) =S e, )

where

f. f, and f, are the damping coefficient in the
directions x, y, v, respectively,

f, (i=1, 2, 3) are the damping coefficient of the
three rotors, respectively.

Assuming X, Yy, w and ¢ are generalized

coordinates ¢, , then we can get the expression of
generalized force which is shown in (4).

- fx

— fyy
f1(¢1 - ‘//) + f2(¢2 - V/) + f3(¢3 - l//) - fu,l//
T,-T, @
el f1
Te2 _sz
Te3 _Tfs

where

T, (i=1, 2, 3) are the electromagnetic torque of the
three motors, respectively,

T, (i=1, 2, 3) are the load torque of the three
motors, respectively.

The Langrange’s equations is shown in (5).
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Applying the expressions of kinetic energy,
potential energy, energy dissipate function and
generalized force into (5), we can obtain the rotation
differential equations of the vibrating system in three
directions and that of the three eccentric lumps which
are shown in (6).

MK+ f X+k x=mr (@ sing, + @ cosg,)
+m,r, (¢, sing, +¢,” cos p,)
+m,r, (¢, sing, +¢,” cos p,)
M+ fy+k,y=mr(-@, cosp, +¢ sing,)
+m,r, (=, cos @, + @, sing,)
++m,1,(—p, COS @, + @,° Sing,)
Jy+fy+ky="1(p -y)+f(p, +vy)
+f,(p, +v)
+mlr[-@, cos(p, — B, —v)
+@, sin(p, - B, —y)]
+m,l,r,[-, cos(p, — B, —w)
+ " sin(p, - B, —y)]
+m,Lr,[-¢, cos(p, — B, —v)
+¢," sin(p, - B, —w)]

Jo@ =T, =T, — f(p, —v)
+m,r,[Xsing, — §cos ¢,]
—-mlir[y, cos(e, - B, —v)
+y7," sin(p, = B, )]

(6)
i=123
where

M is mass of the vibrating system (including the
three exciting motors and the three eccentric lumps),

J is the moment of inertia of the vibrating system
surround O (including the three exciting motors and

3
the three eccentric lumps), J =J,+ml; +Zmill2 ;
i=1

where

X, YV and v are accelerations of the vibrating
body in the directions x, y and  , respectively,

¢, (i=1, 2, 3) are angular accelerations of the three
eccentric lumps.

Assuming that the phase of eccentric rotor 1 leads
that of eccentric rotor 2 by «,, and that of eccentric
rotor 2 leads that of eccentric rotor 3 by «,,, i.e.
O—@Q,=a,, 9,—@, =0, . Assuming that the average
phase of the three eccentric rotors is ¢ when the

vibrating system operates at stable state, and then we
have:

1
(P1:¢+Ea1z
o1,
0, =@ g Y2 )

(23 :(/’_Ealz_azs
p=wt

where @ is the average angular velocity of the
three motors when the vibrating system operates at
stable state.

Assuming the instantaneous variation coefficients
of ¢, a, and a,, are &, & and ¢, (&, & and &,
are the functions of time t),

p=0(+¢)
dlZ :a)€2 (8)
Uy = 08,

From (7) and (8), we can obtain the angular
velocities of the three motors:

o =0 =0l+¢g +%52)

) 1

@, = w, :a)(1+£1—552) 9
) 1

o, =0,=0l+¢ —552 —-&,)

The angular accelerations of the three motors can
be obtained by (9).

.. .o 1.

¢ = w(g1 + Egz)

.. 1.

P, = a)(g1 _582) (10)
.. R R

Py = w(gi _Egz _83)

For the operating speed of the induction motor is
slightly lower than synchronous speed, the influence of

¢, , ¢, and ¢, can be ignored when the system

operate in a stable state. And then the prior three
equations of (6) can be rewritten to (11).

M+ f X+Kk x=mrg’ cose, +m,re,’ cose,
+m,r,¢p,” Cos p,

My +fy+ky=mre’sing +mrep,’ sing,
+m,r,p,”° sing,

Jy+fy+ky="1(p -v)+ (o, -vy) (11)
+f,(p, —v)
+mlre’sin(e, - B, —v)
+m,Lre.” sin(p, — B, —w)
+m,Lr,p," sin(p, - B, —w)

The effect of the damping to the amplitude of the

vibrating system can be neglected because the

WWW.jmest.org

JMESTN42350405

305


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

damping constant is very small (¢ <0.07) [6, 7]. So C,=mlrg’,
the response of x, y and y in (11) can be expressed "
approximately as C,=m,lrg,,
: C, =mylrg’
z—AC‘?S(sz S|n(¢+ax+}/1) 3 L5005,
m o
a = —arctan—Al + A cosay,
Bcos o . AzSinaiz ’
yr————>sin(p+a, +7,) (12)
m, @
5. — —arctan A, cos(a,, + a,, +a,)
2 -
v a, S+ a +7.) [\/(A1+A2003au)2+A§smzoc12 ,
JV,’ ’ ’ + A3 Sin(alz Tyt al)]
where b, = —arcta B,sin¢,

f B,+B,cosa,,
a, = arctan(m) , 1 e 12

. B, sin(a,, + a,, +b,)
[(B, + B, cosa,,) + BZsin®

+ B, cos(e,, + a,, +b,)]

b, =—arctan

, =—

12

f
— y
a,= arctan(m,—) ,
y@

C,sin(a, — B, +

(24 =arCtan(f—"’) Cl = —arctan 2 (a12 ﬁl ﬂz) ,

’ J'/”a) , C1+C2C08(a12—ﬂ1+ﬂ2)
m’ :M —ﬁ Cz = —arctan Ca Sin(a12+a23_ﬂl+ﬁ3+cl)

X a)z ’ [C1 +C2 COS(a12 _ﬁl +ﬂz )]2

k "'_Cz2 Sinz(alz_ﬁ1+ﬂz)

m,=M-—=, +C, cos(a,, +a,, — B, + B, +¢,)]

y wZ

B. Self-synchronization = Conditions of the

~

S Vibrating System
v 2!
The overall kinetic energy of the vibrating system
- —— includes motional kinetic energy of the vibrating body,
[V(A + A cosa,,)’ + Alsin’ a, rotatory kinetic energy of the vibrating body surround
A=— |- Assin(a,, + a, +a,)]° : its centroid, rotatory kinetic energy of the three

eccentric lumps. The expression of the overall kinetic

2
+ A cos(a,, +a,, +a,) energy is shown in (13).

[J(B, + B, cos a,,) + B2 sin® a, T=%M)‘(2+%Myz+%\]y)2+Ti i=1,23 (13)
B=_|+B,cos(a,, + a,, +b,)]* ;
where T, (i=1 2,3) is rotatory kinetic energy of
the three eccentric lumps, respectively. Rotatory
kinetic energy of the eccentric lumps can be seen

2 .2
+ B, sin“(a, +a,, +b,)

\/[Cl +C, cos(a,, = + Bl constant when motor operates in a stable state.
2 ainn? _
+Cysin'(a, =S+ ) , The expression of the potential energy is shown in
C=q+ C3 COS((ZM T, - ﬂ1 + ﬂa + Cl)]2 (2)
+C, sin®(ay, +ay, = B + By 4 ) By using Hamilton principle [9, 10], we can get the
Hamilton action over a single period when the vibrating
7,=05a;, +a +a,, system operates in a stable state.
=0.5a,+b +b . A? cos?
7:=050, +B 4D, H = [ —V)d(a = T2 2
—0.5a,,+C,+C,— ' 2m,
}/3 b 12 1 2 1 T[BZ cosz ay TEC2 COSZ a,/, (14)
.2 + ——+ ———+2mT,
A =B =mrgp’, 2m)w 20w
A =B, =mrp,’, The elastic force and damping force of the vibrating
system is far less than the inertia force and exciting
A =B, =mrp’, force of the vibrating body. If the influence of elastic
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force and damping force is neglected, the dynamical
system is affected by driving moment M (i=1, 2, 3)
and friction torque M (i=1, 2, 3), besides potential

force, i.e. gravitation. So the system is a holonomic
nonconservative dynamical system. By using Hamilton
principle of holonomic nonconservative dynamical
system, we can obtain

5H + L“Zqzsqid(wt):o (15)

where Q, is generalized force of the system, ¢, is
generalized coordinates.

In this system, «, and «,, are generalized
coordinates, so the expression of generalized force Q,
and Q, can be shown in (16).

Q1 :i(Mgi _Mfi) a(pi :l(Mgl_Mfl)

= oa,, 2
1 1
_E(Mgz_MfZ)_E(MQS_MfS) (16)
S oo,
szz(Mgi_Mfi)a :_(Mg3_Mf3)

i=1 23
Considering the independence of phase difference
a,, and a,;, applying (14) and (16) into (15), we have
—(E,E,sina,, — E,E,sina,,)o’k,
+(E,E,sina,, + E,E; sina,,)o’k,

+[ELE,L, sin(a, + 8, + 5,) 17)
+ Ezlesla Sin(Ol23 _ﬂz _ﬂa)]a)zkw +W

=0

where

El :mlrll E2 :erZ 1 E3 :m3r3!

cos’ a,
K =
X mr ’ y mr ’ v

X y v

cos’a,

W= (Mgl_Mfl)_(Mgz _Mf2)+(Mg3 _Mf3)-

Equation (17) can be rewritten as

JHZ+HZsin(a, +6,)++H2 +HZsin(a,,+35,)-W =0

W —/HZ +H; sin(a,,+7,)
JHZ+H?

sin(a,, +6,) = (19)

If the phase difference ¢, and «,, can be stable

over a single period T =2n/w , the three motors of the
vibrating system operate at the same rotational speed,
the system is in a vibratory synchronization state. At

this time, the phase difference «,, keep stability over a
single period, thus, (19) must have a solution of «,,.
Consequently, we have

W — JHZ+ HZ sin(a,, +5,)

| JHI+H:

‘31 (20)

We can get (21) easily

W —JHZ + H sin(a,, +5,)

<[\N|+,/H§+H42

< 21
T e | e @
In addition, we define the ratio in (21) as D, :

W+ H +H;
D = (22)
JH+H?

If we order
D, <1 (23)

then (20) will come into existence without fail.
Inequation (23) is one of the synchronization
conditions of the vibrating system.

By the same method, we can get

5 W[+ H+H; <1
©HIeHE
Inequations (23) in company with (24), i.e. D, <1

and D, <1, make up of synchronization conditions of

the vibrating system driven by three motors in reverse
direction.

(24)

C. Stability Conditions of Synchronous Operation

The stability conditions of the vibrating system
driven by three motors is analyzed based on extreme
value theory of Hamilton action, stability criterion of

(18) system with function of many variables, extreme value
where theory of function. From stability of constrained
) system, we can know that there is minimum value in
H, = EE,0’[x, + &, —x,L1,co8(5, + 3,)], Hamilton action of true motion. Consequently, we can
) . get stability conditions of synchronous operation of the
H, = ELE Lo’k L1, sinC4, - f3,), vibrating system driven by three motors.
H3 = E2E3a)2[Kx -k _Ky/lzla COS(ﬂZ +ﬂ3)] ) o°H >0
aalzz
H4 = EZIZESISG)ZKQ/ Sln(—ﬁz _183) . aZH azH _|: aZH :|2 o (25)
Form (18), we can obtain oal, day, | da,,0a,,
Applying (15) into (25), we have
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Cos(au + a23 + 772)

E [Kx _Ky _KWI1I3 COS(ﬁl _ﬁs)]2
N\ +Ix, LI sin(B, - B,))°
£ [x, +x, + &1, co8(B, ++p,)]°
Y Ik L sings, + BT

cos(a,, +71,)

>0
(26)

c \/[KX +x, +x, 1,1, c08(, + B,)I’
N+ Ix, L1, singB, + B,
[, —x, —x, L1, cos(p, - B
X\/+ [k, L1, sin(B, - B,)]’
xcos(a,, + a,, +1,)C0S(ex,, +17,)
. \/[KX —x, —x, L1, cos(3, - B,)I°
V+Ix Ll sin(B, - B)I°
X\/[Kx — K, — &, 1,1,c08(8, + B,)’ @7
+x, 1,1 sin(B, + BT’
xCoS(ay, + ay, +17,)
[x, +x, +x,11,c08(B + B,)I°
2\/+[KWI1IZSin(ﬂ1 + B
[x, —x, —x,1,1,008(8, + B,)]
><\/+ [k, L1 sin(8, + 4,)]’
x €0S(e,, +1,)cos(ex,, +17,)
>0

From Equations (26) and (27), we can obtain
E3P3 Cos(alz + a23 + 772) > EZPZ cos(alz + 771) (28)

P3[E1P2 COS(O(lz + 771) - E3 I:)1](:05(61512 ta,,+ ’72)

29
> E,PP, cos(a, +17,)c08(ct,, +7,) 29

where

[Kx _Ky _K.,/Izla COS(ﬂZ +ﬂ3)]2
+[x, L1 sin(B, + B,)I°

1 3

3

b _ [x, +x, +x,L1,c08(B + B,)I°
\+x, L, singB, + BT

3

J[rcx i, =k, L1, c08(B, + B,)I°
+[x, L1 sin(B, - B,)I° '
Inequations (28) in company with (29) make up of

stability conditions of synchronous operation of the
vibrating system driven by three motors.

Ill. RESULTS OF COMPUTER SIMULATION AND
DiscuUssION

The vibrating system driven by three motors in the
same direction is simulated by a computer program

based on the self-synchronization and stability
conditions of synchronous operation which are
deduced in the above mathematical analysis. The
results of computer simulation are shown in Fig. 2.
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Fig. 2.Results of computer simulation of a vibrating
system driven by three motors in the same direction

Fig. 2 (a) is rotational speeds of the three motors.
Fig. 2 (b) is phase difference between the first motor
and the second one, and Fig. 2 (c) is phase difference
between the second motor and the third one. Fig. 2
(d), (e) and (f) are the displacements of the system in
X, y and y directions.

From Fig. 2 we can see that there are great
fluctuations in the displacement of the vibrating system
when the system starts to operate. After operating a
few seconds, the system is in a relatively stable
synchronous operation state. This phenomenon result
from that the phase difference between the motors
does not reach a stable state at initial stage after the
system’s operating. At this time, the vibrating system
has not reach the stability conditions of synchronous
operation. Because the structure parameters of the
vibrating system meet the self-synchronization and
stability conditions of synchronous operation,
consequently, we can see from Fig. 2 that the phase
difference between the motors reach a stable state
and meet the self-synchronization and stability
conditions of synchronous operation. Therefore, there
are great fluctuations in the motion of the vibrating
system at initial stage, but it reach periodic stable
operation soon, and the vibrating system is in a stable
synchronous operation state.

Because of the periodic change of the exciting
force and the load torque, the phase difference
between the motors is in a periodic fluctuating state.
Phase difference between motor 1 and 2 fluctuate

around 0.4°, and phase difference between motor 2
and 3 fluctuate around -0.1°. To sum up, the vibrating
system reach a stable synchronous state, the self-
synchronization and stability conditions of synchronous
operation of the vibrating system are validated by
simulation results.

IV. CONCLUSION

From Fig. 2 we can see that the vibrating system
driven by three motors in the same direction can
operate in a stable synchronous state when the
computer simulation is programmed based on the self-
synchronization and stability conditions of synchronous
operation which are deduced in the above
mathematical analysis. When the three motors operate
respectively at initial stage, the rotational speed and
phase difference is not stable and the vibrating system
can not operate in a stable state. After operating a few
seconds, the phase difference get stable under
interaction of the dynamic effect, and then the vibrating
system reach a stable synchronous state. The results
of computer simulation demonstrate that the vibrating
system realizes speed synchronization and phase
synchronization after operating a few seconds when
the computer simulation is programmed based on the
self-synchronization and stability conditions of
synchronous operation. The computer simulation
verifies the correctness of the mathematical analysis.

Self-synchronous vibrating system driven by three
motors in the same direction is analyzed based on
dynamic theory and computer simulation. The self-
synchronization and stability conditions of synchronous
operation of the vibrating system are deduced by using
Hamilton principle.

The dynamic analysis of the self-synchronous
vibrating system has significant theory and engineering
value for solving engineering application problem, it
can provide a good theoretical basis for the design of
the self-synchronous vibrating system driven by
several motors.
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