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Abstract—Self-synchronous theory of vibrating 
system driven by three motors in the same 
direction is studied through mathematical 
analysis in this paper. The mathematics model of 
electromechanical coupling of the vibrating 
system is established, and the self-
synchronization and stability conditions of the 
vibrating system are deduced by using Hamilton 
principle. The characteristic of vibration 
synchronization was studied by computer 
simulation. The vibrating system can implement 
stable operation of vibration synchronization 
when the simulation program is based on the self-
synchronization and stability conditions of 
synchronous operation deduced in the 
mathematical analysis. Simulation results to the 
vibrating system validate the correctness of the 
mathematical analysis, it provides theoretical 
basis for the design of the vibrating system driven 
by several motors. 
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I. INTRODUCTION 

Scientific studies show that macroscopic dynamic 
behavior of complex system not only depends on 
motional characteristics of each subsystem, but has 
close relationship with interaction among subsystems. 

The change of motional characteristics and forms 
of complex system can be affected directly by 
interaction among the subsystem’s motion, it can result 
in new motional structure. To study the characteristics 
of interaction among the subsystem’s motion and the 
influence of the interaction among the subsystem’s 
motion to dynamic behavior of complex system is 
important content of complex system science. 

Zhang Yimin presented a generalized probabilistic 
perturbation finite element method and employed the 
method to solve the response analysis of multi-degree-
of -freedom nonlinear vibrating systems with random 
parameters and vector-valued and matrix-valued 
functions [1]. 

Zhang Tianxia studied coupling effect in a 
synchronous vibrating system, he derived a differential 
equation with an analytical method of nonlinear 
vibration for the coupling motion of two eccentric rotors 
to describe mathematically the coupling parameters of 
the system. Then he studied the synchronization 
development course of two eccentric rotors in depth, 

and deducted the necessary coupling conditions to for 
a synchronization state [2]. 

Zhao Chunyu analyzed the dynamic characteristic 
of a vibrating system with two-motor drives rotating in 
the reverse direction by using the dynamic theory and 
established the equations of frequency capture, he 
obtained the conditions of implementing frequency 
capture and the equations of calculating capturing 
frequency and the phase [3]. 

Wang Degang studied the dynamic coupling 
feature of a vibrating system driven by two motors in 
the same direction, converted the problem of 
synchronization into that of existence and stability of 
zero solution for the equation of frequency capture, 
and then obtain the condition of frequency capture and 
that of stable self-synchronous operation [4]. 

These studies mostly analyzed motional rules of 
synchronous vibrating system driven by two motors, 
few studies analyzed systems driven by three or more 
motors.  

To large vibrating machine, it is not fit to adopt two 
motors to drive vibrating system because of the large 
structure. It should adopt three or more motors to drive 
based on the structure need. There are no effective 
methods to analyze the self-synchronization and 
stability conditions of synchronous operation of the 
vibrating system driven by three or more motors. 
Because of complexity of dynamic model and 
restriction of mathematics method available, the 
research to self-synchronization and stability 
conditions of synchronous operation of the vibrating 
system is carried out mostly around approximate 
synchronous state. There are no further studies to 
nonlinear dynamic mechanism of synchronous system 
and synchronous stability problems. 

In this paper, the self-synchronous theory of the 
vibrating system driven by three motors is studied 
through mathematical analysis in depth, the self-
synchronization and stability conditions of synchronous 
operation of the vibrating system are deduced by using 
Hamilton principle. Simulation results to the vibrating 
system verify the correctness of the mathematical 
analysis. 

II. SELF-SYNCHRONOUS THEORY OF VIBRATING 

SYSTEM DRIVEN BY THREE MOTORS 

A. Mathematical Model of a Vibrating System 
Driven by Three Motors 
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Fig. 1. Dynamic model of a vibrating system driven by 
three motors in the same direction 

Dynamic model of a vibrating system driven by 
three motors in the same direction is shown in Fig. 1. 

O   in the figure is the system centroid, O  and O  are 

its synthesized centroid. Oxy is fixed coordinates, 

yxO   is moving coordinates. '''OO  is the distance 

from synthesized centroid to system centroid, 

0
''' lOO  . O1、O2、O3 are rotative centers of the three 

exciting motors, and they are in one lines. O'O1=l1, 

O'O2=l2, O'O3=l3. 

In working process, the three motors rotate in 
counter-clockwise direction. The three motors which 
supply by the same power drive three eccentric lumps 
each other. The three eccentric lumps excite the 
system to vibrate. The motions of the system are 
vibrations in horizontal direction x, in vertical direction y 

and in rocking direction  ( <<1) [5-8]. With aid of the 

Langrange’s equations, in addition, choosing x, y, , 

φ1, φ2 and φ3 as variable parameters, the vibration 
equation can be established through the expression of 
kinetic energy and potential energy of the system. 

The kinetic energy expression of the vibrating 
system is shown in (1). 
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 (1) 

where 

x, y and   are the displacements of the vibrating 

body in the directions x, y and  , respectively, 

  , , yx  are speeds of the vibrating body in the 

directions x, y and  , respectively, 

m0 is mass of the vibrating body (not including the 
three eccentric lumps), 

mi (i=1, 2, 3) are masses of the three eccentric 
lumps, respectively, 

ri(i=1, 2, 3) are eccentricities of the three eccentric 
lumps, respectively, 

i
 (i=1, 2, 3) are angular displacements of the three 

eccentric lumps, respectively, 

i
 (i=1, 2, 3) are angular velocities of the three 

eccentric lumps, respectively, 

J0 is the moment of inertia of the vibrating body (not 
including the three eccentric lumps), 

i
J (i=1, 2, 3) are the moments of inertia of the three 

eccentric lumps encircled respective rotative centers. 

The potential energy expression of the vibrating 
system is shown in (2). 
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where kx, ky, and k are the stiffness of spring in the 

directions x, y,  , respectively. 

The expression of energy dissipate function of the 
vibrating system is shown in (3). 
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where 

fx, fy and f are the damping coefficient in the 

directions x, y,  , respectively, 

i
f (i=1, 2, 3) are the damping coefficient of the 

three rotors, respectively. 

Assuming x, y,  and i
  are generalized 

coordinates i
q , then we can get the expression of 

generalized force which is shown in (4). 
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(4) 

where 

i
T

e (i=1, 2, 3) are the electromagnetic torque of the 

three motors, respectively, 

i
T

f (i=1, 2, 3) are the load torque of the three 

motors, respectively. 

The Langrange’s equations is shown in (5). 
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Applying the expressions of kinetic energy, 
potential energy, energy dissipate function and 
generalized force into (5), we can obtain the rotation 
differential equations of the vibrating system in three 
directions and that of the three eccentric lumps which 
are shown in (6). 

)cossin(

)cossin(

)cossin(

2

2

22222

3

2

33333

1

2

11111



















rm

rm

rmxkxfxM
xx

 

)sincos(

)sincos(

)sincos(

2

2

22222

3

2

33333

1

2

11111



















rm

rm

rmykyfyM
yy

 

)]sin(

)cos([

)]sin(

)cos([

)]sin(

)cos([

)(

)()(

22

2

2

222222

33

2

3

333333

11

2

1

111111

22

3311


















































rlm

rlm

rlm

f

ffkfJ

 

3,2,1)]sin(

)cos([

]cossin[

)(

2

fe0









i

rlm

yxrm

fTTJ

iii

iiiiii

iiii

iiiiii

















 (6) 

where 

M is mass of the vibrating system (including the 
three exciting motors and the three eccentric lumps), 

J is the moment of inertia of the vibrating system 
surround O (including the three exciting motors and 

the three eccentric lumps), 
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where 

x , y  and   are accelerations of the vibrating 

body in the directions x, y and  , respectively, 

i
  (i=1, 2, 3) are angular accelerations of the three 

eccentric lumps. 

Assuming that the phase of eccentric rotor 1 leads 

that of eccentric rotor 2 by 12
  and that of eccentric 

rotor 2 leads that of eccentric rotor 3 by 23
 , i.e. 

1221
  , 2332

  . Assuming that the average 

phase of the three eccentric rotors is   when the 

vibrating system operates at stable state, and then we 
have: 

t
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where   is the average angular velocity of the 
three motors when the vibrating system operates at 
stable state. 

Assuming the instantaneous variation coefficients 

of  , 12
  and 23

  are 1
 , 2

  and 3
  ( 1

 , 2
  and 3

  

are the functions of time t), 
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From (7) and (8), we can obtain the angular 
velocities of the three motors: 
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The angular accelerations of the three motors can 
be obtained by (9). 
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For the operating speed of the induction motor is 
slightly lower than synchronous speed, the influence of 

1
 , 2

  and 3
  can be ignored when the system 

operate in a stable state. And then the prior three 
equations of (6) can be rewritten to (11). 
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The effect of the damping to the amplitude of the 
vibrating system can be neglected because the 
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damping constant is very small ( 07.0 ) [6, 7]. So 

the response of x, y and   in (11) can be expressed 

approximately as 
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B. Self-synchronization Conditions of the 
Vibrating System 

The overall kinetic energy of the vibrating system 
includes motional kinetic energy of the vibrating body, 
rotatory kinetic energy of the vibrating body surround 
its centroid, rotatory kinetic energy of the three 
eccentric lumps. The expression of the overall kinetic 
energy is shown in (13). 
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where )3,2,1( iT
i  is rotatory kinetic energy of 

the three eccentric lumps, respectively. Rotatory 
kinetic energy of the eccentric lumps can be seen 
constant when motor operates in a stable state. 

The expression of the potential energy is shown in 
(2). 

By using Hamilton principle [9, 10], we can get the 
Hamilton action over a single period when the vibrating 
system operates in a stable state. 
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The elastic force and damping force of the vibrating 
system is far less than the inertia force and exciting 
force of the vibrating body. If the influence of elastic 
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force and damping force is neglected, the dynamical 

system is affected by driving moment i
M

g (i=1, 2, 3) 

and friction torque i
M

f (i=1, 2, 3), besides potential 

force, i.e. gravitation. So the system is a holonomic 
nonconservative dynamical system. By using Hamilton 
principle of holonomic nonconservative dynamical 
system, we can obtain 
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where i
Q  is generalized force of the system, i

q  is 

generalized coordinates.  

In this system, 12
  and 23

  are generalized 

coordinates, so the expression of generalized force 1
Q  

and 2
Q  can be shown in (16). 
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Considering the independence of phase difference 

12
  and 23

 , applying (14) and (16) into (15), we have 
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If the phase difference 12
  and 23

  can be stable 

over a single period /π2T , the three motors of the 

vibrating system operate at the same rotational speed, 
the system is in a vibratory synchronization state. At 

this time, the phase difference 12
  keep stability over a 

single period, thus, (19) must have a solution of 12
 . 

Consequently, we have 
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We can get (21) easily 

2

2

2

1

2

4

2

3

2

2

2

1

223

2

4

2

3
)sin(

HH

HHW

HH

HHW








 
 (21) 

In addition, we define the ratio in (21) as 1
D : 
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If we order  

1
1
D  (23) 

then (20) will come into existence without fail. 
Inequation (23) is one of the synchronization 
conditions of the vibrating system. 

By the same method, we can get 
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Inequations (23) in company with (24), i.e. 1
1
D  

and 1
2
D , make up of synchronization conditions of 

the vibrating system driven by three motors in reverse 
direction. 

C. Stability Conditions of Synchronous Operation 

The stability conditions of the vibrating system 
driven by three motors is analyzed based on extreme 
value theory of Hamilton action, stability criterion of 
system with function of many variables, extreme value 
theory of function. From stability of constrained 
system, we can know that there is minimum value in 
Hamilton action of true motion. Consequently, we can 
get stability conditions of synchronous operation of the 
vibrating system driven by three motors. 
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Applying (15) into (25), we have 
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From Equations (26) and (27), we can obtain 

)cos()cos(
112222231233
  PEPE  (28) 

)cos()cos(

)cos(])cos([

323112212

2231213112213









PPE

PEPEP
 (29) 

where 

2

3232

2

3232

1

)]sin([

)]cos([














ll

ll
P

yx

, 

2

2121

2

2121

2

)]sin([

)]cos([














ll

ll
P

yx

, 

2

3131

2

3131

3

)]sin([

)]cos([














ll

ll
P

yx

. 

Inequations (28) in company with (29) make up of 
stability conditions of synchronous operation of the 
vibrating system driven by three motors. 

III. RESULTS OF COMPUTER SIMULATION AND 

DISCUSSION 

The vibrating system driven by three motors in the 
same direction is simulated by a computer program 

based on the self-synchronization and stability 
conditions of synchronous operation which are 
deduced in the above mathematical analysis. The 
results of computer simulation are shown in Fig. 2. 
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(b)  Phase difference between motor 1 and motor 2 
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(d)  Displacement in horizontal direction 
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(f)  Displacement in rocking direction. 

Fig. 2. Results of computer simulation of a vibrating 
system driven by three motors in the same direction 

Fig. 2 (a) is rotational speeds of the three motors. 
Fig. 2 (b) is phase difference between the first motor 
and the second one, and Fig. 2 (c) is phase difference 
between the second motor and the third one. Fig. 2 
(d), (e) and (f) are the displacements of the system in 
x, y and  directions. 

From Fig. 2 we can see that there are great 
fluctuations in the displacement of the vibrating system 
when the system starts to operate. After operating a 
few seconds, the system is in a relatively stable 
synchronous operation state. This phenomenon result 
from that the phase difference between the motors 
does not reach a stable state at initial stage after the 
system’s operating. At this time, the vibrating system 
has not reach the stability conditions of synchronous 
operation. Because the structure parameters of the 
vibrating system meet the self-synchronization and 
stability conditions of synchronous operation, 
consequently, we can see from Fig. 2 that the phase 
difference between the motors reach a stable state 
and meet the self-synchronization and stability 
conditions of synchronous operation. Therefore, there 
are great fluctuations in the motion of the vibrating 
system at initial stage, but it reach periodic stable 
operation soon, and the vibrating system is in a stable 
synchronous operation state.  

Because of the periodic change of the exciting 
force and the load torque, the phase difference 
between the motors is in a periodic fluctuating state. 
Phase difference between motor 1 and 2 fluctuate 

around 0.4°, and phase difference between motor 2 
and 3 fluctuate around -0.1°. To sum up, the vibrating 
system reach a stable synchronous state, the self-
synchronization and stability conditions of synchronous 
operation of the vibrating system are validated by 
simulation results. 

IV. CONCLUSION 

From Fig. 2 we can see that the vibrating system 
driven by three motors in the same direction can 
operate in a stable synchronous state when the 
computer simulation is programmed based on the self-
synchronization and stability conditions of synchronous 
operation which are deduced in the above 
mathematical analysis. When the three motors operate 
respectively at initial stage, the rotational speed and 
phase difference is not stable and the vibrating system 
can not operate in a stable state. After operating a few 
seconds, the phase difference get stable under 
interaction of the dynamic effect, and then the vibrating 
system reach a stable synchronous state. The results 
of computer simulation demonstrate that the vibrating 
system realizes speed synchronization and phase 
synchronization after operating a few seconds when 
the computer simulation is programmed based on the 
self-synchronization and stability conditions of 
synchronous operation. The computer simulation 
verifies the correctness of the mathematical analysis. 

Self-synchronous vibrating system driven by three 
motors in the same direction is analyzed based on 
dynamic theory and computer simulation. The self-
synchronization and stability conditions of synchronous 
operation of the vibrating system are deduced by using 
Hamilton principle.  

The dynamic analysis of the self-synchronous 
vibrating system has significant theory and engineering 
value for solving engineering application problem, it 
can provide a good theoretical basis for the design of 
the self-synchronous vibrating system driven by 
several motors. 
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