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Abstract — The present paper is devoted to the
investigation of lossless transmission lines with
Josephson junction. Such lines are described by
first order hyperbolic system partial differential
equations with sine nonlinearity. We formulate a
mixed problem for this system with boundary
conditions generated by a circuit corresponding
to Josephson junction. We present the
transformed mixed problem in an operator form,
introduce approximated solution and obtain a
sequence convergent to a generalized solution.
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|. INTRODUCTION

A lot of papers have been devoted to the
investigation of lossless transmission lines terminated
by nonlinear loads and their applications to RF-circuits
(cf. for instance [1]-[13]). Here we consider a lossless
transmission line with Josephson junction (cf. [14],
[15]) arising in the problems of superconductivity.
From mathematical point of view the lossless
transmission line system with Josephson junction is a
nonlinear hyperbolic system plus a relation between
Josephson flux and voltage:

ou(x,t) I_6’i(x,t)

OX ot

di(x,t) _ ou(xt) . . 270(xt)

iy C m josm—O , (2)
%:u(x,t)

(x) eI ={xt)eR?: (xt)[0,A]x[0,T])}.
Here u(xt), i(x,t) and ®(x,t) are unknown

functions — voltage, current and Josephson flux, L and
C are prescribed specific parameters of the line, A >0

1
JLC
— maximal Josephson current per unit length,
®,=h/(2¢)=2.10">W/m? - flux induction quant,
K; =1/®, — Josephson constant.

is its length, v= — the speed of propagation, j,

The commonly accepted approach to solve the
above system is to obtain sine Gordon equation which
can be derived in the following way:

02D (x,t) _oux 2D(x,t) _ L0y

oxot ot oxot ot
3 2:
0 Cng,t) N La i(x,t) _0,
ox“ot otox
: 2
al(éx,t) —_C 0 (D(2>(,t) ~ josin 271D(x,1) N
X ot (O
L 2%i(xt) _ e a*o(xt) L 0 [ i 27 (x,1)
oxot ot oot o /)
Therefore
3 3
0 <D§x,t) _LC 0 <D(;<,t) _ Ljoﬁ sin 27D (X,1) 0
ox“ot ot ot 0
or
2 2
0 (D(;(,t) _Lca <1>(2x,t) L Sin27zc[>(x,t) _0 @)
OX ot (O}

The above transformations prove that if (1) has a
solution then (2) is satisfied. It is quite obvious that the
inverse assertion cannot be proved without additional
assumptions. That is why we consider the original first
order lossless transmission line system with sine
nonlinearity (cf. Fig. 1):

uet) LAY _ o gl o ju(x s)ds

o C  ox C S 3
), 1auxt) _,
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»
Fig. 1 Losssless transmission line with Josephson junction

First we assume that the resistive element R; (at

the right end) is a linear one in order to show of how
to overcome the difficulty generated by sine
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nonlinearity. We investigate the case of nonlinear
resistive element in a next paper.

For (3) one can formulate the following mixed
(initial-boundary value) problem: to find the unknown
functions u(x,t) and i(x,t) in domain

={xt):xe[o,Alte[0,T]
satisfying initial conditions

u(x,0) = Ug(x), i(x0) =ip(x), x<[0,A] 4)
and boundary conditions obtained from the loads (cf.
Fig.1):

E() -u(0.) - Ri(0.) =0, t[0.T], ®
Co M0 ia - Zuan.tepoT], ©)
1

Here iy(x), up(x) are prescribed initial functions -
the current and voltage at the initial instant, E(t) is a
prescribed source function, R;,R, and C, — specific

parameters of the elements of the circuits.

First we transform the hyperbolic system in a
diagonal form and then present the mixed problem for
the new obtained hyperbolic system in an operator
form (cf. [16]). The operator formulated is not strict
contraction. Theorem 2.1 (cf. [17]) cannot be applied
because the operator is not non-expansive. That is
why we introduce a notion n -approximated solution. It
is obtained as a unique fixed point of an operator with
domain  TI,={(xt):xe[0,A-@/n)] te[0,T].  This
operator is strict contractive on IT, and therefore has

a unique fixed point in the space of continuous
functions, namely n -approximated solution. Then we
extend functions from II, on IT and choose a

convergent subsequence. Its limit we call generalized
solution of the mixed problem.

Il. DIAGONALIZATION OF THE HYPERBOLIC SYSTEM

Introducing denotations

U:|:'_J:|, a_UEUt:|}It} a—UEUX:|:HX:|,

i ot I OX Iy
- t

0 1/C J_Osin[zﬂKJ [ u(x,s)ds]
1/L of c 0

0
we can rewrite (3) in the form

yLg” —1/(\/5)52(1):0 LD +1/(JE)§§2):0

that is:
60.60)- (e L), (52.69)= (Ve VL),

Denote by A the matrix formed by eigen-vectors

oo _lts inverse is H!= 1/‘/— -1 .
- L) 2y Uy
1/JLc o
Then A® =HAH = .
o { 0 —1/\/5}
Introduce new variables
{V(X’t)} {f“xﬂ ,Z=HU,(U=H"Z)
1(x,t) i(x1t)
or
V (x,t) =/C u(x,t)+/L i(x,t)
1(x,t) = —v/C u(x,t)+ /L i(x,t)
and
_Vxt)  1(x1)
Hixt)= 2Jc  2Jc ®)
i(x,1) = V (X, t) 1(x,t)
’ 2L 2L
Substituting U=H™zZ in (7) we obtain
a(H 712)+ Aa(H 712):F. But H ! is a constant matrix
ot OX

that implies H'Z, +(AH ‘1)ZX =T . Multiplying from the
left by H we obtain
Z,+ Az = HT. 9)
Since

B N ——sm{ZﬂKJj'u(x,s)dsj _
Hl"_{_\/E \/E} C 0 =

—-—SI {TJ;' V(x,s)— I(x,s))dsj
——sm{ j v (x,s)- I(x,s))ds}

then (9) can be written in the form:

0

‘ X 45

H t
Jo i
|:L-jt:|+ E/Lllﬂpx} _Esm(zﬂKJ gu(x,s)dsj v 1, Y
I Ix 0 ot N JLC x| _
or a iy L |2
U +AU, =T. 7) ot VLC JLox
. 0 1/C i K ¢
In order to transform the matrix A= in ~Jo gin ™9 V (x,8)—1(x,s))ds
) e )
diagonal form we solve the characteristic equation: - i K t( )
-1 1/C ——=sin| —==|(V(x,s) = 1(x,s))ds
‘1/L i‘:o with roots 4 =1/VLC, A,=-1/J/LC. Jc \/EJ;
Eigen-vectors are solutions of the systems: or
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N, 1 v J_o-[ﬂK_jV(xs) 1(x,s))d J
ot ox
\/_ X \/— 0 (10)
%_%% _T [\/_J'V(xs)—l(xs)) ]
The new initial conditions for Xe[O,A] become:
V (x,0) = +/C u(x,0)+~/L i(x,0) =
VC ug () +L g (x) =V (x), (11)

1(x,0) = —/C u(x,0)+ /L i(x,0) =

= —/Cugy () + /L g (x) = 15 ().

We obtain new boundary conditions substituting
u(x,t) and i(x,t) from (8) into (5) and (6). Indeed, in
view of

and Z, =M we obtain
V(0,t) = Z‘l‘/so E(t)+ ;2 ; EZ 1(0,t) -

di(A,t) _ dv(AL) Rl—ZOV(A - R +Z, (A
dt dt CoZoRy 7 CoZoRy T
If we assume that
1(A,0) =15(A) =Vy(A)=V(A,0)=0

then
t
LA =V (A1) — =20 2o | [V s)ds - Ri*zy 1120 [1(A, 5)ds.
0 ORl 0 0-0"1 o
Introducing denotations
2Z -R R —-Z R +Z
o= 0 ,3— 0 4 =120, - 1720
in (12) we obtain new boundary conditions:
V(0,t) = a/CE(t) + B1(0,t),
(13)

(A D)=V (AL) - yl.t[V (A,s)ds — yzj (A, s)ds.
0 0

I1l. OPERATOR FORMULATION OF THE MIXED PROBLEM

The mixed problem is: to find a solution
(V(x,t), 1(x,t)) of the system

N 1 v jo.(

ERNE NG

Zi \/1_2:( \;0_ i ( \/_'[V(x ,S)— I(x,s))dsj

satisfying initial conditions
V(x,0)=Vy(x), 1(x,0)=

and boundary conditions

V(0,t) = a/CE() + 81(0,t), te[0,TI;

el j V(x,5)— (X, s))ds]

lo(x), xe[0,A] (14)

Remark 3.1. Since we prove an existence of
continuous solution we assume that the following
Conformity condition (CC) is satisfied (cf. [16]):

V(0,0) = av/CE(t) + 1(0,0), 1(A,0)=V(A,0).

Indeed the following conditions

1(0,0)=0,V(0,0) =0, E(0) =0, 15(A) =V, (A)
imply (CC).

We assign to mixed problem (14) the regularized
problem (14-n): to find a solution (Vn (x,t), In(x,t)) of
the system

N, 1NV t
Y \/_ ™ —fsm( !J'V(x ,s)— (X, s))ds]
Zl \/1_ 2)'( —Tsm[ :.;V(X s)—1(x, s))js]

for (x,t)ell, :{(x,t )eR%:(x,t)e[0,A —(1/n)]><[0,T])},
satisfying initial conditions

V (%,0) =V (x); 1(x,0) = Iy (x); xe[0,A-(U/n)lneN (14-n)
and boundary conditions

V(0,t) = aJCE() + #1(0,t), te[0,T];

I(A—l,tJzv(A—i,t]—yle(A—l,sjds—
n n 0 n

¢ 1
_72£|(A—H,s]ds, t<[0,T].

Prior to define an operator corresponding to the
mixed problem we consider Cauchy problem for the

characteristics (cf. [16]) (v=1/+/LC)):

%:v, £(t)=x foreach (x,t)ell, =

o (LX) =V +x-\t, (15)
g—fz—v, &(t)=x foreach (x,t)ell, =

@ (T X, 1) = VT + X+t . (16)

The functions A4, (xt)=v>0 and A4 (x,t)=—v<0

are continuous ones and imply a uniqueness to the
left from t;, of the solution x=g,(t;Xt,) for

dx/dt=v; x(t,) =%, and respectively x =g, (t;Xy,ty)
for dx/dt=-v; x(ty) =X,

Denote by x,(x,t) the smallest value of r such
that the solution ¢, (7;x,t)=vz+x—-vt of (15) still
belongs to II, and respectively by x,(x,t) the
solution ¢, (z;x,t)=—vz+x+vt of (16). If x,(xt)>0
then @, (xy (X,1);x,t)=0 or @, (x (Xt);xt)=A—-(1/n)
and respectively if y,(x,t)>0 then ¢, (x, (x1);x,t)=0
or ¢ (x, (xt);x,t)=A—(1/n).

In our case
(xt) = (Mt—x)/vfor vt—x>0_
AV 00 forvi-x<0

_ o o _ (e x—(A-@/m))v for vt+x—(A-1/n))>0
(A1) =V (A1) y1£V(A,s)ds yz.([I(A,s)ds,te[O,T]. z.(x,t)—{ . br vt x—(A—(U/n))<0.
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Remark 3.2. We notice that x,(x,t) and g, (xt)
are retarded functions in t, that is,

7o) <t=2<t,
\'

o<t XA o AZUm=A 1
\) V nv

It is easy to see that

oy (LX) =vr+x—-vt = ¢, (0;x,t)=x—-Wvt,

o (T xt)=—vr+x+vt = ¢, (0;x,t) =X+Vt.

Introduce the sets
Iy ={(xt) eI, : x (xt)=0}={(x,t) [T, :x-vt >0};
M =16 ey 7 () =0}
z{(x,t)el‘[n :x+vt—(A—(1/n))sO};
), ={(xt)ell,: z (xt)>0,

nes (x,t);x,t)zwﬂ_vtzo};

5, ={(xt) e, : z,(xt)>0,
vlvt +x—(A - (1/n))]

o ( (1) x,t) =— +X+Vt=0}=®;

\"
I, ={(xt) eI, : 7y (x,1) >0,
v(vt - x)

o (v (X, 1);x,1) = +x—vt:A—1/n}=®;

I, ={(xt)ell,: 7 (xt)>0,

—vt+x-(A-@/n))]
v

Prior to present problem (14) in an operator form
we introduce

o (7, (x,1);x,1) = +x+vt=A—l/n}.

Vo(oy (0:x,1), (x,t) eITjy
Dy (V, DX =1 Do (V, 1)z (1) (x,1) eTTf, =
CI)AV (V’ I )(/YV (th))’ (X!t) € H?\V

:{ Vo(x—w), (xt)eTTh,y
Doy (V, 1)y (X, 1)), (x,1) e T,
and
Lol (O;x,1), (x,t) eITh,
OV, D) =1 @ (V.1 )z (D) () eTlg, =
@, (v, 1)z (x1) (x,t) eI},

[ texew), (pyem),
Dy (V: l)()(l (X,t)): (xt) eTT},

or

_ VQ(X_Vt)v (th) € 1_Iirln,V
Oy (V. D08 = {QJEE(;(V)W 10, 2) (%) eTThy
(DI (V, I)(th) =

IO(X+Vt))’ (X,t) erI?r‘l,l

“vxt) —7JV(X, s)ds —72j 1(x,5)ds, (x.t)eIl?,.
0 0

So we assign to the above mixed problem the
following system of operator equations

V=8B,V,1), I=B(V,I), (17)
where

B, V,)(xt)=
VO (X _VI)r (th) € 1_[inn,V

- CDV(V,I)(X,t)—j—0 j sin[ il j(V(X,S)—KX,S)hSJdr, (x.t) ey
( 0

C ot (20/C

B| (Vv l)(X|t) =

(
(D,(V,I)(x,t)—% j sin[L](V(x,s)-|(x,s))ds]df, (xt) e,
Z|(Xrt) 0

Remark 3.3. We restrict ourselves on the subset

M, ={xt)eR?: (xt)e[0,A—@W/m]x[o,T])fc 11
because (as we shall see below) operator (17) is non-
expansive on IT, while it is a strict contraction on IT,, .

So we get an existence of a unique solution defined
on

M, = {xt)eR%: (xt)e[0,A-@Wn)x0 T
for every fixed ne N .
Introduce the function sets

My = e C(IT): IV (x.B)] <V, x [0,AL t € [0,T1},

M, =1{l eCam):|1(xt)] < 1, x e[0,A], t[0,T1},

My = I € C(IL,) -V ()] Vg xe[0,A- W) t e [0,T]),

M=l €CL): (0] < o6, xe[0,A-(Wn)], te[0T]),
where Vg, |y, 4 are positive constants.

It is easy to verify that the set M,, xM, turns out

into a complete metric space with respect to the
metric:

PV, 1),(7, 1) = max {p(v. V), p(1,1)},

where

p(V V) = suple N (x,t) -V (x,B)]: (x.t) T},

p(1,T) =supf |1 06~ T(x D) : () € 1}
and constant x>0 can be chosen sufficiently large.

The set M, ,xM,, is endowed with induced
metric on I1,, namely

PV 1), (7, 1)) = max {p, (V.V), p, (1, D)},

PalV V) =sup IV () =V (1) (1) < T, ).

IV.EXISTENCE-UNIQUENESS OF AN APPROXIMATED

CONTINUOUS SOLUTION

Theorem 4.1. Let the following conditions be
fulfilled:
4.1) |E@®)|<Eyte[0,T];

xe[0,A=@/n)];

[Vo(x)| <Voo; ||0(X)| <loos

4.2) max Oo;a\/EE0+|ﬂ|lo}+wsvo;
Ho,C

WWW.jmest.org

JMESTN42350403

294


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040
Vol. 2 Issue 1, January - 2015

4.3)

max{ lgo; Voe “V+e nv w o #ralls + joﬂ(;/OHO)SIo,
JZ pDC

Ky =] B|+— 207 <1; K, =e W 1+|}/| 22107z <1
u2®,C H) pd,C

for sufficiently large #>0.

Then there exists a unique C(I1,) -solution of (14-n).

Proof: We establish the operator B maps the set
My, xM, ; into itself.

We notice that B, (x,t) and B, (x,t) are continuous
functions. We have to show that

By (V. DD Vo By VDD < g

Indeed

By (v, H(x D) <[y (1) +
Y

7 {q) \/_J‘V(X ,S)+ (X, s))is]
Z\/(Xt)

{ lVo(X Vt)|
aCECzy (% O)|+ |1 (0, 7, (x, 1)

do? j j(]\/(x s)|+[1(x, s|)dsdr<

(DOC Xy (x,t)0

dr <

j' _T[e“sdsd <
2y (D)0

Voo Jo
{a\/_E0+|ﬂ|I0 @, C(v0+|
< e max\/yg;aCE, +|ﬂ|l0}+ %(e” —e'V jﬁvoe"t
H D
and analogously
[1o(x+vt))|
By (V. 1)(x,t)|< “ o +
VA=), 7)) +|7| | Voe™ds+[rs| [e*ds
0 0

+ =0 Jo t ( V(x,8)—1(x,S) s}d <
Jc 21 I(xt) c1’0\/—I P fi
I00

Jor(Vy + 1
Sy e M +°#<sz;0C°)em
< max{loo; Voe”[t_nlvj + eﬂ[t_%] M}Jr

7

jorr(Vo + 1
+Jo”(20+ O)e”‘s
Ho,C
A

o
< e max{ly; Voe ™ + e "V—|71[V0+|72||° +

Operator B is a strict contraction:

|Bv(Vl|)(X:t)—Bv(\7 D0H[ <[ @y (v, D -0y (VD8] +

40" Jo [”\/(x s) -V (x, s)|ds+”|(x s)—1(x, S)|d3]dr<
(DOC zy (X t)\0

<[ A1, (% 1) 10,y (x tfe 4 *Ve v *0 4

+qj;°—0’é[ j [ﬁv(x,s) ~V (x, ) e ds +

2y (x,t)\ 0

+ j|| (x,8) — T(x, s)|e““e”sdstr <
0

<|Blpa(1, e 0+ oV ¢ (1) [ jedstes
0,C 1y (610

2j07r(e”t —e’%’)

LP0,C Pn (V. 1), (V1)) <
0

<||Ble" +

<e“[lﬂ| ﬂ2’°” Jpn«v 1).(7,1).
It follows

(B, (V. 1), B, (7, l))<[|ﬂ| 2lom

Jpn«v 1),(7, 1)
= Ky oo (V. 1), (7, T).

For the second component we obtain

1B, (v, 0= B, (V, Dt <[ @, (v, 1)(x, ) =@, (V, D, 0]+
Jor V (x,9)fds-+ [|1(x,5) - T(x, 9)ld ]d

+<1>0C[l (Xt)[ [\/(x s)— (xs| S+ | (x,8)—=1(x, s)| s (dr

<V (A=(@/n), 7)) =V (A= (/n), z,)le e +

+ InlljI V(A= (2/n),8) -V (A~ (L/n),s)e *e*ds+
0

] 1A= @), 5)~ T(A - W) e erds+
0

+ qj)o—(:é[ j U[\/ (x,5) -V (x,5)e “*e**ds +

x| (x,t)\ 0
+{[1exs) - T(x, s)|e"’se’5dsﬁdr <
0
<p,(V V)

A _
oV V) [ sty o, (1,1) | eds +
0 0

o) 2 0D) | g,

®,C 2, (x1) 0
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HX _1
+

7
_ -£ e
<e’p (V.V)e ™ +|ylp(V.V)

HX _1
+

o] 20 (1,1

ol V) +p(1D) E et
®,C 0 M

“ .
< e//te nv +ellte nv |7/1| |7/2| 22.|07Z- (e#t e ) x
H ﬂ @,C

X po(V, 1), (V, |_))S

7,

427 Jpn«v 1.(7.1)).
,u

It follows

Pa(By(V,1),B,(V, 1) <|e ”"+|y1| |72|e o 2210” o
u weC

xpp((V, 1), (V1) = Ky o (V1. (V1))

Consequently

pul(By (V. 1), B, (V. 1)) (B, (V. 1),B, (V. 1)) <
< max{Ky ;K o, (V. 1), (V. 1)) = Ko, (V, 1), (V, ).

Operator B is contractive one for sufficiently large
#>0 and (14-n) has a unique solution (Vn, In)

belonging to My , xM, .
Theorem 4.1 is thus proved.
V. EXISTENCE OF SOLUTION OF THE MIXED PROBLEM

Let us introduce the subsets
M) =& e My IV (x,t) -V (%, E)| < Iy (x— x|+t ]),
x, X €[0,A],t,T [0, T]};
Ml ={leM, |1ty - 1(x,0)| <1, (x— x|+t -]),
x,X €[0,A],t,f €[0,T]}.

For sufficiently large fixed n in accordance of
Theorem 4.1 we obtain a unique solution (V,,1,) on

My, =

=V eMy V) -VE )] <l (x- %+t -) xM] =
“{leMy, gty -1 D] <1, (x =]+ )

for every ne N. We extend the functions (V,,1,) on
the whole domain TI=[0,A]x[0,T] such that

extensions (V,,, In)e MV X MI
For instance
~ Vo(6t),  (xt)e[0; A—@Q/n)x[0;T]
Vn(X!t) = )
Vo (A=(@/n)1), (xt)e[A-@/n); A]x[0;T]
~ (1),  (xt)e[0; A—@/n)]x[0;T]
I, (x,t) = .
{ L(A=(@/n)t), (x,t)e[A-(@1/n); A]x[0;T]
Now we are able to state the problem for existence

of Iim@n,rn) in the topology of M) xM| . The
n—oo

sequence (Vn, n) is bounded, but we are not sure that

it is convergent. In view of Arzela-Ascoli theorem, we
can choose a convergent subsequence provided

(Vn, In) is equicontinuous family of functions.
Indeed, if we add conditions

El) |:B|II \/E <IV

E2) I, +|}/1[V0+|7/2||0+\/J_0S|
then (B, (V,1)(x,t),B,(V,1)(x,t)} forms an equi-

continuous family of functions.
In fact

l\/n(x,t) _Vn ()_(!f)| :|B\/ (Vn’ In)(X!t)_ BV (Vn' ln)()_(,t_)| <
<[ @y Vy, )06 1) — Dy (Vy, 1)K, D]+

o | | v, | dr -
" Jc 7 {xt) {cbo‘/_'[ Ges) =l S))jS] ’
£
- (V, (x,9) = 1, (%, s))isjdr <
ZV.('-Xt) ( \/—J‘
<|B1O, 1y (1)) = 1(0, 2y (X,E))] +

+j_—°Qt ~ ]+ 1, (D - 2, (x,f)|)s

<|Bh | (6. 1) = (X, D)|+ J_|t i+
+%|ﬂ(\, Xt -z, (>‘<,t')|s

< (|ﬁ|ll +%J|Zv CRIEY ()_('f)| +%|t —f| <

<[+ -1+ 2] g
s[wu. S R ST

<o+ 2021 + 2 -5
[|ﬁ|| 2JOJ(|t_f|+|x_x|)g|V(|t_f|+|x_z|)

and
||n(X,t)— In()_(!f)| :|BI Vo, 1), 1) = By (Vi, In)()_(!f)|S
<], (Vg 1) D)~ D, (Vs 1, )%, D)]+

t

+j° ( V., (%,8)—1,(x,s) sjd—
\/_Z{“, <1>0\/_j o fir

f
- J' sin
7 G \PoVC

<

jv (x,8)— 1, (x, s))js]dr
0
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<MV, (A=(/n), 7, (x,0) =V, (A= (L/n), 7, (X, D)) +

Z| (X,t) Z| (X,t)
+|n] jvn(A—(lln),s)ds+|y2| jln(A—(l/n),s)ds+

l| (Y,f) Z| (i,f)
H t
JT j sm[
p (Xt

jii ((D \/—J.V(XS) |(XS))jSJdT<

7 (%D

]v (6,5)=1_(x, s))ds]dr—
0

zp (xt) Zp ()

<||;(,(Xt) ;(,(Xt)|+|]/l| .deS+|;/2 f|0d3+

xy () 71 (X.0)
+%Qt—t’|+‘;¢l (x)- 7, (%,0))<

< Iv|ﬂ(| ) -x ()_(’f)|+
"‘(I?/l[vo +|7/2|IOX}(| (Xat)_l, ()_(,f)“"

+%Qt—f|+‘;(l () -7, (RD)|)<

j o1 o
g[uv (o +|y2|lo)+%](|t—t|+v|x—X|}+
R E [u o+l s J_jp i+

AR Y

v +[pNo +r[lo + c (t~t[+x—x])<
(4 #

<1, (t €| +x—x)).

It is easy to see that functions 67,], fn) are extended
in such a way that they remain equicontinuous family
on II. Therefore (\/n,ln contains a convergent sub-

sequence whose limit we call a generalized solution of
(14).

VI.CONCLUSION

In fact we have no uniqueness of solution but we
have obtained a sequence tending to solution which is
difficult for compact and densifying operators. A
specific algorithm of constructing such a sequence we
will give in a next paper.

Here we collect all inequalities from the proof of the
above theorems and show they are satisfied for real
data. Indeed for sufficiently small Vg, 159 we have:

: JCE I jo”(Vo+|o)SV :
maXVog; & o+|ﬂ| 0}+—,u2<1)0C 0

2oz .
Ky =g+ =7 g,
v =18+ 2®oC<
K —e nv_,’_|}/2|e vy < 2 jOﬂ- <1:
Iz u* ©C
|ﬂ|| +TO<|V, |71[V0 |72|| JO<|

Let us consider a Josephson transm|ssion line (cf.
[19], [20]) with L=2510°H/m C=1310°F/m,

JC =11410° VL :5.10’5,v:1/(1,14.10’3.5.10’5):L75.107,
characteristic impedance Z,=+L/C :\/i2,5.10‘9 i/iL3.10‘6)
~0,044Q , ©y=210"W/m?, j,=19A/m . Let us
take R, =R, =Z,, C,=10""'F . Then

pe oy ZoRe o Ri-Zy
Zo+Ry, 7 Zy+R, ' CoZoR,

vy =20 45101 jor =597 o IVC =19/114.10°%)
COZORl

~ 166.10% (7 jo)/(®,C)=~2,6.10%

For length A=10"m we have to choose the
accuracy at least 1/n=10" Obviously we must
choose at least ;1:1013 and therefore exp(—u/nv) =
— exp(- (10110%) /(1,75.107) )~ exp(-5,71) ~ 33.10°°,

Then the above inequalities for sufficiently small
initial data become:

2,6.10%1
loT(Vo +10)<Vo;

2,6.10%1 4510 2,6.10% Ll
+ 1028 ot 103 + 1028 0—="0"
2

21 .
KV :]-OTZ,610 <1,

114.10°E, +

[3,3.10—3

45.10'

K.:3,3.103[1+ e J+10%2,6.1021~3,3.103.1,45<1;
2.166.10° < ;

l, +4,5.10"%1,+2.1,66.10° <1, .
It should be noted that the actual physical
quantities must be calculated by the formulas

u(x,t) =V (x4 )+ 1(x, /(2L )

i(x,t) = V(x,t)/(zJE )— |(x,t)/(2JE )
or

u(x,t) =10*V (x,t) +10* 1(x,t)

i(x,t)= 4,4.10% V(x,t)—4,4.101(x,t).

So if we want to get voltage order 10° we have to
choose V, =1, =107,

The above example shows that in contrast to [16]
we obtain a generalized solution on the whole

M
max |0 V e nv +e nv |7/1[V0 |}/2|| 107[(;/0 +1 )S I ' reCtangle [O,A]X[O,T]
u ©o,C
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