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Abstract—Are considered natural oscillations 

of the toroidal shell with stationary flow of an ideal 
fluid. The problem is reduced linear system of 
homogeneous algebraic equations for with 
complex coefficients. Frequency equations are 
solved by Muller. Numerical results obtained for a 
steel casing. It has been established that the 
greater the curvature of the pipe, the more rigid it 
becomes, and the thicker the pipe wall, the more 
rigid it is. 

Keywords—Toroidal shell, ideal fluid, algebraic 
equations whose curve with frequency equation, 
the method of Mueller. 

Introduction 

Studies of the natural oscillations of curvilinear 
sections of pipelines with a constant flow of fluid within 
the core of the theory were developed in the second 
half of the last century. One of the first works in this 
field is Article V.S.Ushakova [1], which was obtained 
by the equation of motion of a circular section of the 
pipeline and to investigate its own vibrations at a 
constant flow rate and internal pressure. The flow rate 
was considered low, which allowed dropping some 
small terms of the equation and making the decision 
to study oscillations of a circular rod. Further research 
in this area began to develop quite rapidly in 
[5,6,7,8,9,10,11,12,13,14,15,16,17,18]. 

Natural oscillations of a fluid flow to the curved 
sections of thin-walled large- 

Diameter pipeline, which constitute one of the most 
complicated geometry types of membranes (toroidal 
shells), which are the most vulnerable section of the 
pipeline in operation, it was not possible to investigate 
(due to difficulties in determining the value of the 
hydrodynamic fluid pressure). 

Statement of the problem and solution 
methods. 

A curved portion viewed in a pipeline of large 
diameter thin-walled tube through which flows an ideal 
non-compressible fluid with a constant velocity 

constU   and a constant hydrostatic 

pressure contsp 0 . n addition, the pressure acting 

on the wall of the pipe arising from the pressure of the 
hydrodynamic fluid movement. The aim is to study 

frequencies and modes of flexural vibrations in the 
plane of curvature of the section of the pipeline as a 
thin toroidal shell taking into account the dynamic 
effect of the flowing fluid, internal pressure and 
deformation of the middle surface of the shell at 
considerable movements. Damping is considered 
small and is neglected. Viewed conduit portion is 
represented as a portion with a radius of of the 

toroidal shells R  a longitudinal axis extending 
through the centers of gravity of its cross-sections. 
Cross-sections - circular with a radius of midline 

section r , shell thickness h . The ratio 
r

h  assumed 

to be small, so you can use the ratio of the theory of 
shells based on Kirchhoff-Love. The end section of 
the shell is pivotally secured believe. Inside the shell 

with a velocity constU   ideal incompressible fluid 

flows with density contsp 0 . 

 

Fig. 1. The curved section of the pipeline in the 
toroidal coordinates 

The geometry of the curved portion of the pipeline 
shown in Figure 1 a of the toroidal shell having a 

median toroidal curved surface coordinates  , , где 

  means the central angle of the torus, and  - angle 

in cross section shell   20  . If the longitudinal 

axis of the shell is half of a circle of radius R , as 

shown in Figure 1. the angle   varies within 

 0 . When considering the middle surface in 

curvilinear coordinates  ,  differentials segments 
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arcs coordinate lines 1ds  and 2ds (see Figure 1) 

differentials associated with the coordinates 

themselves through the Lame parameters 1A  and 

2A : 

  ,,cos 21  rddsdrRds   Therefore 

rArRA  21 ,cos   (1) 

Curvature of normal sections of the middle surface 

in the unstrained state at 
cos

1


R  and rR 2  on 

Figure 1 is given by: 

,
cos

cos1

1 



rRR 


rR

11

2

 .  (2) 

Components moving point A  median surface 

(Figure 1) to
*A , related to the radius r  (i.e. 

dimensionless) and directed along the coordinate 

y,,  and the external normal to median surface 

are denoted by wWu y ,,, . The rotation angle of the 

tangent to the center line of the cross-sectional 

contour, denoted by  . When considering the 

deformation of the toroidal shell that occurs when 
bending vibrations in the plane of curvature 
assumptions used polubezmomentnoy V.Z.Vlasova 
shell theory [12] and strictly justified in A.L. 
Goldenveyzera [13] for a sufficiently long oblochek 
(whose length is much larger than the radius of the 
cross section). In toroidal coordinates these 
assumptions formulated in the following way: 

- Elongation in the circumferential direction 2  is 

small compared with the relative movement of w  and 

derivative ,







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- The relative shift of median surface   is small 

compared with the coordinate lines of the angles of 

rotation, i.e. from 



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- Rotation angle of the tangent to the mean cross-
sectional contour defined by the expression 




 



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w
 

- arising in the shell of force and deformation are 
related by: 
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- In all the equations of equilibrium shell element 

except fourth value can be lowered lateral forces 1Q  

and twisting moments H . 

This (3) denotes: 

1M  and 2M  - the bending moments, 1T - 

longitudinal force, S - shearing force, E  - modulus of 

elasticity the shell,  - the Poisson coefficient, 2 - 

change of curvature, D - a cylindrical shell stiffness 

 2

3

112 


Eh
D . 

All parameters specified by the index 1 correspond 

to coordinate lines   and index 2 lines  . The 

equation of motion of bending vibrations of the toroidal 
shell (Figure 1) are introduced on the basis of general 
relations geometrically nonlinear theory of shells 
middle bend described in the monograph H.M. 
Mushtari and K.Z. Galimov [7]. This theory considers 
such a bend membranes, in which the maximum 
deflection (in this case - the radial displacement of the 
points, of the middle surface w ) is the same order of 

magnitude of wall thickness, or even exceed it, but is 
small compared with other linear dimensions of the 
shell. 

According to this theory, the force equilibrium 
equations for the moments element toroidal shell 
being in the deformed state, have the form (indices 1 

and 2 refer to the toroidal coordinates   and   

respectively): 
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 (4) 

where 321 ,, XXX - vector components of the 

external force. The first three equations (4) are the 
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equations of equilibrium of forces, the last two - the 
equations of equilibrium points. Differential equations 
of equilibrium shell element (4) are non-linear, as 
contain pieces efforts and deformations. In addition, 
they obtained for shell being in the deformed state. 
Therefore, in these equations includes radii of 

curvature 
*

1R  and 
*

2R  deformed middle surface. Their 

connection to the curvature of the initial state (2) is 
expressed in accordance with [4] the following 
relations: 
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Change the curvature of the cross section midline 

shell 2  and torsion   expressed in terms of the 

angle of rotation   the following relations: 
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In accordance with the assumptions (3) - (5) shell 
theory V.Z. Vlasova [1] in the first three equilibrium 

equations (4), a transverse force ignore 1Q , а in the 

last two - torque H . As a result, after substitution in 
(4) parameters Lame (1) was obtained in accordance 
with the principle of d'Alembert system of equations of 
motion of the shell in the efforts: 
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Where 321 ,, XXX  - components of the inertial 

forces to the coordinates  ,  and normal to the 

median surface respectively. Out of the equation (7), 

all forces and moments, except 1T  and 2M , come to 

one equation of motion in the efforts: 
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To solve dynamic problems of this section of the 
pipeline is necessary to obtain the equation of motion 
in the toroidal shell displacements. 

Therefore, we transform equation (8), expressing 

effort 1T  and 2M  and deformations 1  and   in 

displacements, using the relations between the forces, 
strains and displacements on the membrane theory of 
shells (3), as well as expressions for the principal 
curvatures of the shell in the deformed state (5) and 

for the change of curvature 2  and torsion   

relations (8): 
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where wvu ,,  - attributed to the radius r  

dimensionless displacement components, yW  - 

projection on the axis of movement of point A of the 

middle surface of the shell in position 
*A  as a result 

of the deformation of the contour (see Figure 1),  - 

rotation angle of the tangent to the middle shell 
section line due to the deformation of the cross 
section. 

Substituting relations (6), (7) and (9) into equation 
(12), neglecting the small non-linear terms, we obtain 
the governing equation of motion of the toroidal shell, 
expressed in terms of displacements 
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Where 
*

iX  - components of the forces of inertia: 

Tangential components of the coordinates   and 

  

,
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Normal component (normal to the middle surface 
of the shell) 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 1, January - 2015 

www.jmest.org 

JMESTN42350357 161 

;
2

2
*

3 p
t

w
rhpX 




  

p - Internal pressure, including hydrodynamic, 

fluid motion occurs, - density of the shell material. 

The equation of motion, of the toroidal shell (10) is 
a differential inhomogeneous partial differential 

equation with four unknowns, ,,, wvu . Acceded to 

by three sex ratio of the membrane theory of shells 
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Obtain a complete system of equations with four 
unknowns. At steady stream of liquid solution of 
equation (10), (11) to determine the frequency and 
form of the natural oscillations of the curved section of 
the pipeline. 

Determination of the hydrodynamic pressure 
induced flow of liquid. One of the main factors 
determining the solution of dynamic problems for 
pipes with flowing liquid is the hydrodynamic pressure 
of the fluid in the pipe wall. In addressing these 
challenges within the core of the theory [5, 6, 7, 8] for 
straight and curved sections of the pipeline 
hydrodynamic pressure on the non-deformable wall of 
the pipe without difficulty determined by the well-
known component of the velocity of the liquid. 
Dynamic problems for thin-walled large diameter 
pipes are solved on the basis of the theory of shells 
with deformed middle surface, and here, for the 
determination of the hydrodynamic pressure methods 
are used hydro- and aerodynamics. 

In this paper we present a solution to the problem 
of determining the hydrodynamic pressure of the fluid 
on the wall of the curved section of the pipeline, 
obtained in [9] in the toroidal coordinates based on the 
theory of potential flow of an incompressible fluid. 

The curved portion of the pipeline is seen as a 
toroidal shell with a radius line cross-section r , within 

which proceeds speed constU   ideal 

incompressible fluid with a density constp 0 . 

Region bounded by the toroidal completely filled with 

liquid, covered in toroidal coordinates  ,,  where 

r0 - radial coordinate in the plane of the cross 

section of the torus (see Figure 1), 00    и 

  . Lame coefficients it const  have 

the form [10]: 
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Where c - scale factor. The velocity field of an 

ideal incompressible fluid in the membrane 
fluctuations is rotational potential field with 

potential  t,,,   . The system of basic 

equations of the potential flow of an ideal 
incompressible fluid includes [11]: 

- The equation of continuity (Laplace) 02   , (13) 

- The equation of motion (Euler)   ,0
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
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t


 (14) 

- equation of state ,0 constp    (15) 

Where  pQ  - united in the fluid flow pressure 

function, determined at constp 0  equality 
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Where p  and 0p  - hydrodynamic and hydrostatic 

pressure, respectively. 

(13) - (15) establishes a connection between the 
hydrodynamic pressure p  and potential perturbed 

velocity : 
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Considering the fluid flow velocity vector U  in 

toroidal coordinates, we write expressions for its 

components on  ,, : 
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For the components of the velocity vector U , 

directed along the normal to the surface of the 
deformed sheath, the condition of the surface of the 
smooth flow of the liquid stream [12]: 
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Where w  - referred to the radius r  dimensionless 

component of movement points of the middle surface 
of the shell. 
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Fig. 2. The pipe with flowing liquid. 

Thus, the problem of determining the 
hydrodynamic pressure of the fluid in the pipe wall is 
reduced to finding potential , satisfies the Laplace 

equation (13) and the conditions (18), (19) r . 

The Laplace equation (17) into the toroidal 

coordinates system  ,  and   has the form 
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As a result of separation of variables after 

substitution   
21

cos22  ch  and presentation of 

unknown function  t,,,   in the form of: 

       tФCBA    

We obtain from (20) well-known equation of the 
torus: 

0
2

1
2

22






















 A

sh
nA

sh

ch
A








   (21) 

Where constnconst  , . 

The general solution of the torus (21) is determined 
by a linear combination of the functions independent 

of the torus  chP
n

2

1


 and  chQ
n

2

1


, represents 

one of the kinds Legendre functions of the 1st and 
2nd kind: 
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Taking into account that the task is considered an 
area bounded by the surface of a torus coordinate , 

the changing within the limits r0 , and that in 

0  Legendre function of the 2nd 

kind   


chrQ
n

2

1 , in the solution (22) to be 

put 02 A . Therefore, the solution of the torus (21) 

will be expressed only through the Legendre function 
of the 1st kind: 
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and the solution of Laplace's equation (20) with 
(21), (22) and (23) will have the form: 
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Artwork  tA ,,1   we find from (23) by taking 

the partial derivative















 . Substituting then the 

value of this product in (24), we obtain an expression 
for the velocity potential: 
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Where  cos2  chrB  . The hydrodynamic 

pressure of the flowing fluid on the wall of the shell is 
found from (17) and neglecting small 2nd order arising 

in the calculation of a private function   by  : 
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Where indicated 
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In the formula (26) for the hydrodynamic pressure 
on the bracketed expression analogy cylindrical 
[13,14] to be considered given acceleration (based on 

the velocity U ) элемента оболочки, and the value of 

nФp0 , depending on the density 0p , regarded as a 

connected body of liquid 
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where  chrP
n

2

1


 and  chrP
n

2

1


  - Legendre 

function of the first kind and its first derivative. To find 

the parameter 
*

nФ  formula (28) is not necessary to 

calculate the Legendre functions and their derivatives, 
as this ratio formula contains a derivative of the 
function the Legendre function itself. From the 
directory for special functions [16]: 
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Where ...3,2,1n  - wave numbers, define the 

shape of the oscillations. From formulas (28) and (29) 

we see that the value of 
*

nФ  determining the 

hydrodynamic pressure of fluid flow on the wall of the 
shell. Hydrodynamic pressure increases as the 

curvature
R

r
, but within the accepted assumption that 

10

1


R

r . To solve the system of equations (10) and 

(11) represent the bending vibrations occurring during 
the normal component of the toroidal shell move 

 tw ,,  as satisfying the boundary conditions at 

the edges of the shell: 
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As well as satisfying the conditions for cycling 

circumferential coordinate : 
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Where  tf - time function 
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m

,,,  -wave numbers, defining 

the envelope waveform in the circumferential and 
longitudinal directions, respectively. 

From the relations (31) between the components 
move at a value for (30) we obtain expressions for the 
other components of the displacement and rotation 
angle: 
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Substituting expression (31), (32) for moving the 
component and the rotation angle in the equation of 
motion of the shell (10) and calculating the partial 

derivatives with   and  , obtain the governing 

equation for the unknown amplitude values 
m

a  and 

comprising a function of time  tf  and the second 

time derivative  tf  : 
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To simplify the form of equation (33) we introduce 

the dimensionless parameter shell thickness h : 

 ,112, 2



  c
rc

h
h  where  - 

Poisson's ratio. 

Divide each term of the equation (33) to
2

h . As a 

result, We obtain: 

    021 
mm tftf   (34) 

Where 
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In addition, equation (34) using the curvature 
parameter toroidal shell , adopted in shell theory [7, 

13], which characterizes not only the geometry of the 
shell, but also its material t. k. includes a Poisson 
coefficient:  
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Entering a marked transformation in equation (34) 
and assuming that the proper bending vibrations 
occur toroidal shell harmonically with the circular 
frequency , i.e. 
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  (35) 

Here we have that in the penultimate term of 

equation (34) the value of discarded
2

2

R

r
, small 

compared with the wave number ....3,2,1m  

Dynamic equations of motion of the toroidal shell 
with a stationary fluid flow (35) obtained on the basis 
of a geometrically nonlinear variant theory of shells 

and the theory of potential flow of an ideal 
incompressible fluid is a homogeneous equation. All 
the members of which have coefficients of the 

trigonometric functions ...3,2,1,sin mm , 

describing the deformation of the cross-sections of the 

shell when bending vibrations. At 1m  fluctuations 

in the shell occur during deformation cross-sectional 
contours are displaced in the process of oscillation as 
hard to aim. Therefore, the waveforms do not affect 

the internal pressure 0p , as a member of the equation 

(35), containing the pressure vanishes at 1m . All 

other waveforms ( ...4,3,2m ), is connected with the 

deformation contour of the cross section (see Figure 
1) and pressure. Just natural frequencies and mode 
shapes depend on the physical - mechanical 
properties of the material and liquid membranes. 
Natural frequencies of the curved portion of the 
pipeline for all forms of a shell oscillations is 
determined by equating the coefficients of like 

trigonometric functions msin  at ...3,2,1m  The 

resulting system of homogeneous linear algebraic 
equations can be written in compact form: 

   0dc
ij

 (36) 

Where 02;01,...;3,2,1  mmm , 

and the coefficients jic ,  determined by the 

expressions: 
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Posed the problem of determining natural 
frequencies of the curved portion of the pipeline with 
the flowing liquid is reduced to an eigenvalue problem 
of the coefficient matrix of the system of 
homogeneous linear algebraic equations (36). 

The numerical results. 

Investigation of frequencies of natural bending 
vibrations curvilinear sections of pipelines (steel) with 
a stationary fluid flow. In line with the speed of the 

water flowing from and 0 to 
c

м
50  . The results 

obtained allowed us to estimate the effect of flow rate 
on the frequency of the first four waveforms 

( 4,3,2,1m  at 3,2,1n ). The calculations were 

performed for the curved pipe with the relative values 

60

1
,

40

1
,

30

1

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h
 and different 
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curvatures
20

1
,

10

1


R

r
, that match the 

curvature 8,5 ; 11,6 and 23,1. These parameters, 

in turn, correspond to the following values of the 
coefficients of curvature bends and twists pipelines: 

28,0;57,0  and 0, 14. Modulus of elasticity of 

steel, which made the pipe, it is 

assumed MПаE 5102  , Poisson 

coefficient 3,0 . 

Results of calculations are shown in Tables 1-2 
and the graphs ris.3-4 which shows the frequencies of 

own flexural oscillation mn  the curved sections of the 

steel pipe according to the velocity of the flowing fluid 
at different thicknesses of the shell. 

The flow velocity u, varies in the range of real 

velocity of the liquid flowing in the pipes (to 
c

м
25 ), 

has little effect on the natural frequency of the curved 
sections of steel pipe for all investigated a shell 

vibration modes ( 3,2,1m ,4 при 3,2,1n ). The 

oscillation frequency mn  decreasing the flow rate 

increases from 0 to 25
c

м
 not more than 10%. 

Table 1. Natural frequency depending on the 
velocity of the flowing fluid 
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Mode 

shape 
Frequencies 0u  20u  40u  

1m  

11  26,46 21,01 17,25 

12  21,01 20,45 17,74 

13
 22,92 22,72 20,55 

2m  

21  13,39 12,83 10,42 

22  16,67 15,82 12,51 

23
 18,68 18,44 16,2 

3m  

31
 13,02 12,29 9,28 

32
 16,43 15,61 12,32 

33
 18,34 18,17 15,83 

4m  

41


 19,47 19,33 14,21 

42


 20,12 20,06 12,97 

43


 21,36 21,22 11,38 

For each of the above sections of the pipeline 
largest natural oscillation frequencies are the first form 

n1  at 1m . In the absence of deformation of the 

contour of the cross sections of the pipe – i.e., a pipe 

varies as the beam pipe section. At 2m  curvature 

parameter section of the pipeline   and 
r

h
 

significantly affects the natural frequencies. 

The smaller the curvature of the pipe and thinner 

than its wall, the lower are its natural frequency mn  

virtually all forms of. Table 2. The natural 
frequencies depending on the velocity of the 
flowing fluid 

20

1


R

r

, 60

1


r

h

 

5,11  

mn
(Hz) at a flow rate of 

fluid flowing in с

м

 

Mode 

shape 
Frequencies 0u  20u  40u  

1m  

11  55,34 53,47 51,13 

12  56,05 55,27 52,39 

13
 60,56 59,99 57,18 

2m  

21  36,26 34,09 28,57 

22  44,60 43,78 40,35 

23
 51,67 50,52 47,06 

3m  

31
 35,02 33,01 26,51 

32
 43,11 43,50 39,22 

33
 50,03 49,63 46,58 

4m  

41


 53,01 50,31 47,44 

42


 54,95 52,05 48,50 

43


 55,82 53,92 49,99 

For the dynamic analysis of the pipeline are the 

most important envelope waveform ( 2m  and 3). 

With increasing curvature of the pipeline, then there is 

a relationship 
R

r
, at constant relative thickness 

( const
r

h
 ) frequencies mn  own flexural 

vibrations increase. Also, by increasing the relative 

thickness of (
r

h , at a constant curvature of the tube) 

the natural frequencies of flexural vibrations 
increases. 
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Figure 3. Changing the Eigen frequencies of bending 
vibrations of the speed of the flowing fluid (h=0.001). 

 

Figure 4. Changing the Eigen frequencies of 
bending vibrations of the speed of the flowing fluid 
(h=0.005). 

Thus, the greater the curvature of the pipe, the 
more rigid it becomes, and the thicker the pipe wall, 
the more rigid it is. 

Conclusions. 

1. Based on the theory of nonlinear shells for the 
task, the technique of determining the natural 
frequencies of the thin-walled curved portions of large 
diameter pipe under the influence of internal 

hydrostatic pressure and the hydrostatic pressure 
caused by the fluid motion. Application of this method 
in dynamic calculations of pipelines to avoid any 
dangerous resonance phenomenon. 

2. The system of differential equations of motion 
and curvilinear toroidal shell based on a variational 
principle and system of differential equations of 
motion of the toroidal shell reduced to a Mathieu 
equation. 

3. The flow velocity u, varies in the range of real 

velocity of the liquid flowing in the pipeline (to 
c

м
25 ), 

has little effect on the natural frequency of the curved 
sections of steel pipe for all investigated a shell 

vibration modes ( 3,2,1m ,4 при 3,2,1n ). the 

oscillation frequency mn  decreasing the flow rate 

increases from 0 to 25
c

м
 not more than 10%. for 

each of the above sections of the pipeline largest 

natural oscillation frequencies are the first form n1  at 

m=1. Thus, the greater the curvature of the pipe, the 
more rigid it becomes, and the thicker the pipe wall, 
the more rigid it is. 
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