Fixed Points of Expansion Mappings in Fuzzy Menger Spaces with Property (E.A)

Sunita Soni ,Rashmi Pathak And Manoj Shukla Department of Mathematics, Govt. Model Science College, Jabalpur, (MP)

manojshukla012@yahoo.com

Abstract—The aim of this paper is to prove a common fixed point theorem for non-surjective expansion mappings in Fuzzy Menger space employing the property (E.A).

Keywords—Fuzzy Menger space, nonsurjective mappings, weakly compatible mappings, expansion mappings, property (E.A).

1. Introduction

Fréchet [3] introduced the concept of metric space in which notion of distance appears. An essential feature is the fact that, for any two points in the space, there is defined a positive number called the distance between the two points. However, in practice we find very often that this association of a single number for each pair is, strictly speaking, an over-idealization. Therefore, Menger [8] introduced the concept of probabilistic metric space (briefly, PM-space) as a generalization of metric space.

Banach contraction principle [1] is an important tool in the theory of metric spaces. Due to its simplicity and usefulness, it became a very popular tool in solving existence problems in pure and applied sciences such as biology, medicine, physics, and computer science. Probabilistic contractions were first defined and studied by Sehgal [12]. Banach contraction principle [1] also yields a fixed point theorem for a diametrically opposite class of mappings, viz. expansion mappings. The study of metrical fixed point theorem for expansion mapping is initiated by Wang et al. [17] . Since then, Pant et al. [10] studied fixed point theorem for expansion mappings in framework of probabilistic metric spaces . and so many authors [2], [4], [12], [14] and [16] worked on this topic. Rajesh Shrivastav, Vivek Patel and Vanita Ben Dhagat[15] have given the definition of fuzzy probabilistic metric space and proved fixed point theorem for such space.

2. Preliminaries

Definition 2.1 A fuzzy probabilistic metric space (FPM space) is an ordered pair (X,F_{α}) consisting of a nonempty set X and a mapping F_{α} from XxX into the collections of all fuzzy distribution functions $F_{\alpha} \in \mathbb{R}$ for all α . $\in [0,1]$. For x, $y \in X$ we denote the fuzzy distribution function $F_{\alpha}(x,y)$ by $F_{\alpha(x,y)}$ and $F_{\alpha(x,y)}(u)$ is the value of $F_{\alpha(x,y)}$ at u in R.

The functions $F_{\alpha(x,y)}$ for all $\alpha. \in [0,1]$ assumed to satisfy the following conditions:

- $(a) \quad \mathsf{F}_{\alpha(x,y)}\left(u\right)=1 \ \forall \ u>0 \ \text{iff} \ x=y,$
- $(b) \quad \ \ \mathsf{F}_{\alpha(x,y)}\left(0\right)=0 \ \forall \ x \ , \ y \ in \ X,$
- (c) $F_{\alpha(x,y)} = F_{\alpha(y,x)} \forall x , y in X,$
- $\begin{array}{ll} \text{(d)} & \text{If } \mathsf{F}_{\alpha(x,y)}\left(u\right) = 1 \text{ and } \mathsf{F}_{\alpha(y,z)}\left(v\right) = 1 \Rightarrow \mathsf{F}_{\alpha(x,z)}\left(u\!+\!v\right) \\ & = 1 \ \forall \ x \ , \ y \ , z \ \in X \text{ and } u, \ v > 0. \end{array}$

Definition 2.2 A commutative, associative and non-decreasing mapping t: $[0,1] \times [0,1] \rightarrow [0,1]$ is a t-norm if and only if $t(a,1)=a \quad \forall a \in [0,1]$, t(0,0)=0 and $t(c,d) \ge t(a,b)$ for $c \ge a, d \ge b$.

Definition 2.3 A Fuzzy Menger space is a triplet (X,F_{α},t) , where (X,F_{α}) is a FPM-space, t is a t-norm and the generalized triangle inequality

 $\mathsf{F}_{\alpha(x,z)}\left(\mathsf{u}{+}\mathsf{v}\right) \geq t\;(\mathsf{F}_{\alpha(x,z)}\left(\mathsf{u}\right),\;\mathsf{F}_{\alpha(y,z)}\left(\mathsf{v}\right))$

holds for all x, y, z in X u, v > 0 and α . \in [0,1].

The concept of neighborhoods in Fuzzy Menger space is introduced as

Definition 2.4 Let (X, F_{α}, t) be a Fuzzy Menger space. If $x \in X$, $\varepsilon > 0$ and $\lambda \in (0, 1)$, then (ε, λ) - neighborhood of x, called $U_x(\varepsilon, \lambda)$, is defined by

 $U_{x}(\varepsilon,\lambda) = \{y \in X: F_{\alpha(x,y)}(\varepsilon) > (1-\lambda)\}.$

An (ε,λ) -topology in X is the topology induced by the family $\{U_x (\varepsilon,\lambda): x \in X, \varepsilon > 0, \alpha \in [0,1] \text{ and } \lambda \in (0,1)\}$ of neighborhood.

Remark: If t is continuous, then Fuzzy Menger space (X,F_{α},t) is a Housdroff space in (ε,λ) -topology.

Let (X,F_{α},t) be a complete Fuzzy Menger space and A \subset X. Then A is called a bounded set if

 $\underset{u\rightarrow\infty}{lim}\underset{x,y\in A}{inf}F_{\alpha(x,y)}\left(u\right)=1$

Definition 2.5 A sequence $\{x_n\}$ in (X, F_α, t) is said to be convergent to a point x in X if for every ε >0and λ >0, there exists an integer N=N(ε, λ) such that $x_n \in U_x(\varepsilon, \lambda) \ \forall n \ge N$ or equivalently $F_\alpha(x_n, x; \varepsilon) > 1 \cdot \lambda$ for all $n \ge N$ and $\alpha \in [0, 1]$.

Definition 2.6 A sequence $\{x_n\}$ in (X, F_α, t) is said to be cauchy sequence if for every $\varepsilon > 0$ and $\lambda > 0$, there exists an integer N=N (ε, λ) such that for all $\alpha \in [0, 1]$ $F_\alpha(x_n, x_m; \varepsilon) > 1-\lambda \forall n, m \ge N.$

Definition 2.7 A Fuzzy Menger space (X, F_{α}, t) with the continuous t-norm is said to be complete if every

Cauchy sequence in X converges to a point in X for all $\alpha \in [0,1]$.

Following lemmas are selected from [8] and [12] respectively in fuzzy menger space.

Lemma 2.1. Let $\{x_n\}$ be a sequence in a Fuzzy Menger space (X, F_{α} ,t) with continuous t-norm * and t $* t \ge t$. If there exists a constant $k \in (0, 1)$ such that

$$\begin{split} F_{\alpha(x_n,x_{n+1})}(kt) \, \geq \, F_{\alpha(x_{n-1},x_n)}(t) \, \text{for all } t > 0 \quad , \\ \alpha \! \in \! [0,\!1] \text{.and} \; n = 1,\,2,\,\ldots\,, \end{split}$$

then $\{x_n\}$ is a Cauchy sequence in X.

Lemma 2.2 . Let $(X,\ F_{\alpha},\ t)$ be a Fuzzy Menger space. If there exists $k\in(0,\ 1)$ such that

$$\label{eq:gamma} \begin{split} F_{\alpha(x,y)}(kt) \, \geq \, F_{\alpha(x,y)}(t) \, \text{for all } x, \; y \, \in \; X \; , \; \text{for all} \\ \alpha \in [0,1] \text{ and } t > 0, \; \text{then } x = y. \end{split}$$

Definition 2.8[5] A pair (A, S) of self mappings of a non-empty set X is said to be weakly compatible (or coincidentally commuting) if they commute at their coincidence points, that is, if Az = Sz some $z \in X$, then ASz = SAz.

Two compatible self-maps are weakly compatible, but the converse is not true (see [13, Example 1]). Therefore the concept of weak compatibility is more general than that of compatibility.

Definition 2.9[6] A pair (A, S) of self mappings of a Fuzzy Menger space (X, F_{α}, t) is said to satisfy the property (E.A), if there exists a sequence $\{x_n\}$ such that

 $\lim_{n\to\infty} Ax_n = \lim_{n\to\infty} Sx_n = z,$

for some $z \in X$.

3. Main Results

Now we prove our main result:

Theorem 3.1. Let *A*, *B*, *S* and *T* be four self mappings of a Fuzzy Menger space (X,F_{α},t) . Suppose that

(3.1) (A, S) (or (B, T)) satisfies the property (E.A);

(3.2) $T(X) \subseteq A(X), S(X) \subseteq B(X);$

(3.3) (A, S) and (B, T) are weak compatible

(3.4) One of the range of the mappings A, B, S or T is a closed subspace of X. (3.5) There exists a constant k > 1 such that

 $F_{\alpha(Ax,By)}(kt) \leq F_{\alpha(Sx,Ty)}(t),$

for all $x, y \in X$, for all $\alpha \in [0,1]$ and t > 0.

Then A, B, S and T have a unique common fixed point in X.

Proof. If the pair (B, T) satisfies the property (E.A), then there exists a sequence $\{x_n\}$ in X such that

$$\lim_{n\to\infty} Bx_n = \lim_{n\to\infty} Tx_n = z,$$

for some $z \in X$ as $n \to \infty$.

Since $S(X) \subseteq B(X)$, there exists a sequence $\{y_n\}$ in X such that $Bx_n = Sy_n$. Hence, $\lim_{n \to \infty} Sy_n = z$. Also, since $T(X) \subseteq A(X)$, there exists a sequence $\{y'_n\}$ in X such that $Ay'_n = Tx_n$ and so $\lim_{n \to \infty} Ay'_n = z$.

Assume that S(X) is a closed subspace of X, then there exists a point $u \in X$ such that z = Su. By inequality (3.4), we have

 $F_{\alpha(Au, Bx_n)}(kt) \leq F_{\alpha(Su, Tx_n)}(t).$

On letting $n \rightarrow \infty$, we get

$$F_{\alpha(Au, z)}(kt) \le F_{\alpha(z, z)}(t) = 1,$$

for all t > 0, $\alpha \in [0,1]$. and k > 1. By Lemma 2.2 we have Au = z and hence Au = Su = z.

The weak compatibility of A and S implies that Az = ASu = SAu = Sz. Now, we assert that z is a common fixed point of A and S. From inequality (3.4), we have

$$F_{\alpha(Az, Bx_n)}(kt) \leq F_{\alpha(Sz, Tx_n)}(t).$$

On letting $n \rightarrow \infty$, we get

 $F_{\alpha(Az, z)}(kt) \le F_{\alpha(Az, z)}(t),$

By Lemma 2.2, we have Az = Sz = z. On other hand, since $S(X) \subseteq B(X)$, there exists a $v \in X$ such that Bv = Su = Au = z. On using inequality (3.4), we have

$$F_{\alpha(Au,Bv)}(kt) \le F_{\alpha(Su,Tv)}(t),$$

or equivalently,

$$F_{\alpha(z,Bv)}(kt) \le F_{\alpha(z,z)}(t),$$

for all t > 0, $\alpha \in [0,1]$ and k > 1. In view of Lemma 2.2, we get Bv = Tv = z.

Similarly, the weak compatibility of B and T implies that Bz = BTv = TBv = Tz. By inequality (3.4), we have

$$F_{\alpha(Au,Bz)}(kt) \le F_{\alpha(Su,Tz)}(t),$$

and so

$$F_{\alpha(z,Bz)}(kt) \leq F_{\alpha(z,Bz)}(t).$$

Owing to Lemma 2.2, we have Bz = Tz = z. Thus in all, we have Az = Bz = Sz = Tz = z which shows that *z* is a common fixed point of mappings *A*, *B*, *S* and *T*.

Finally, we prove the uniqueness of z. Let $w(\neq z)$ be another common fixed point of involved mappings A, B, S and T then using (3.4), we have

$$F_{\alpha(Az,Bw)}(kt) \leq F_{\alpha(Sz,Tw)}(t),$$

or, equivalently,

$$F_{\alpha(z,w)}(kt) \le F_{\alpha(z,w)}(t).$$

Appealing to Lemma 2.2, it follows that z = w. This completes the proof.

The proof is similar if we assume that one of the subspace B(X), S(X) or T(X) is closed.

Remark 3.1. The conclusion of Theorem 3.1 remains true if we replace inequality (3.4) by one of the following: for all k > 1, x, y > 0, $\alpha \in [0,1]$ and t > 0

(3.5)

$$F_{\alpha(Ax,By)}(kt) \le \min\{F_{\alpha(Sx,Ty)}(t), F_{\alpha(Ax,Sx)}(t), F_{\alpha(By,Ty)}(t)\}$$

(3.6)
$$(F_{\alpha(Ax,By)}(kt))^2 \leq F_{\alpha(Ax,Sx)}(t) F_{\alpha(By,Ty)}(t)$$

By setting A = B and S = T in Theorem 3.1, we can obtain a natural result for a pair of self mappings.

Corollary 3.1. Let *A* and *S* be two self mappings of a Fuzzy Menger space (X, F_{α}, t) . Suppose that

(3.10) $S(X) \subseteq A(X);$

(3.11) (A, S) satisfies the property (E.A);

(3.12) One of the range of the mappings A or S is a closed subspace of X,

(3.13) There exists a constant k > 1 such that

$$F_{\alpha(Ax,Ay)}(kt) \leq F_{\alpha(Sx,Sy)}(t),$$

for all $x, y \in X$, $\alpha \in [0,1]$. and t > 0.

Then A and S have a unique common fixed point in X.

Conclusion

Theorem 3.1 is a generalization of some results in the sense it is proved for non-surjective mappings under weak compatibility which is more general than compatibility and without any requirement of completeness of the whole space and continuity of the involved mappings.

References

[1]. S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1922), 133-181.

[2]. R. C. Dimri, B. D. Pant and S. Kumar, Fixed point of a pair of non-surjective expansion mappings in Menger spaces, Stud. Cerc. St. Ser. Matematica Universitatea Bacau, 18 (2008), 55-62.

[3]. M. Frechet, Sur quelques points du calcul fonctionnel, Rendic. Circ. Mat. Palermo, 22 (1906), 1-74.

[4]. R. K. Gujetiya, V. K. Gupta, M. S. Chauhan and O. Sikhwal, Common fixed point theorem for expansive maps in Menger spaces through compatibility, Int. Math. Forum, 5(63) (2010), 3147-3158.

[5]. G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9(4) (1986), 771-779.

[6]. I. Kubiaczyk and S. Sharma, Some common fixed point theorems in Menger space under strict contractive conditions, Southeast Asian Bull. Math., 32 (2008), 117-124.

[7]. S. Kumar and B. D. Pant, A common fixed point theorem for expansion mappings in probabilistic metric spaces, Ganita, 57(1) (2006), 89-95.

[8]. K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28 (1942), 535-537.

[9]. S. N. Mishra, Common fixed points of compatible mappings in PM-spaces, Math. Japon., 36 (1991), 283{289.

[10]. B. D. Pant, R. C. Dimri and S. L. Singh, Fixed point theorems for expansion mapping on probabilistic metric spaces, Honam Math. J., 9(1) (1987), 77-81.

- [11]. B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics. North-Holland Publishing Co., New York, (1983).
- [12]. V. M. Sehgal, Some fixed point theorems in functional analysis and probability, Ph. D. Dissertation, Wayne State Univ., (1966).

[13]. B. Singh and S. Jain, A fixed point theorem in Menger Space through weak compatibility, J. Math. Anal. Appl., 301 (2005), 439-448.

[14]. S. L. Singh and B. D. Pant, Common fixed point theorems in probabilistic metric spaces and extension to uniform spaces, Honam Math. J., 6 (1984), 1-12.

- [15]. R.Shrivastav, V.Patel and V.B.Dhagat, "Fixed point theorem in fuzzy menger spaces satisfying occasionally weakly compatible mappings"Int. J. of Math. Sci. & Engg. Appls., Vol.6 No.VI, (2012), 243-250.
- [16]. R. Vasuki, Fixed point and common fixed point theorems for expansive maps in Menger spaces, Bull. Cal. Math. Soc., 83 (1991), 565-570.
- [17]. S. Z.Wang, B. Y. Li, Z. M. Gao and K. Iseki, Some fixed point theorems on expansion mappings, Math. Japon., 29 (1984), 631-636.