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1. Introduction 

Fréchet [3] introduced the concept of metric space 
in which notion of distance appears. An essential 
feature is the fact that, for any two points in the space, 
there is defined a positive number called the distance 
between the two points. However, in practice we find 
very often that this association of a single number for 
each pair is, strictly speaking, an over-idealization. 
Therefore, Menger [8] introduced the concept of 
probabilistic metric space (briefly, PM-space) as a 
generalization of metric space.  

Banach contraction principle [1] is an important tool 
in the theory of metric spaces. Due to its simplicity 
and usefulness, it became a very popular tool in 
solving existence problems in pure and applied 
sciences such as biology, medicine, physics, and 
computer science. Probabilistic contractions were first 
defined and studied by Sehgal [12]. Banach 
contraction principle [1] also yields a fixed point 
theorem for a diametrically opposite class of 
mappings, viz. expansion mappings. The study of 
metrical fixed point theorem for expansion mapping is 
initiated by Wang et al. [17] . Since then, Pant et al. 
[10] studied fixed point theorem for expansion 
mappings in framework of probabilistic metric spaces . 
and so many authors [2], [4], [12],[14] and[16] worked 
on this topic. Rajesh Shrivastav, Vivek Patel and 
Vanita Ben Dhagat[15] have given the definition of 
fuzzy probabilistic metric space and proved fixed point 
theorem for such space. 

2. Preliminaries 

Definition 2.1 A fuzzy probabilistic metric space 
(FPM space) is an ordered pair (X,Fα) consisting of a 
nonempty set X and a mapping Fα from XxX into the 

collections of all fuzzy distribution functions FαR for 

all α.  [0,1]. For x, y  X we denote the fuzzy 
distribution function Fα (x,y) by Fα(x,y) and Fα(x,y) (u) is 
the value of Fα(x,y) at u in R. 

The functions Fα(x,y) for all α.  [0,1] assumed to 
satisfy the following conditions: 

(a)  Fα(x,y) (u) = 1  u > 0 iff x = y, 

(b)  Fα(x,y) (0) = 0  x , y in X, 

(c)  Fα(x,y) = Fα(y,x)  x , y in X, 

(d)  If Fα(x,y) (u) = 1 and Fα(y,z) (v) = 1  Fα(x,z) (u+v) 

= 1  x , y ,z X and u, v > 0. 

Definition 2.2 A commutative, associative and 

non-decreasing mapping t: [0,1]  [0,1] [0,1] is a t-

norm if and only if t(a,1)= a a[0,1] , t(0,0)=0 and 

t(c,d)  t(a,b) for c  a, d  b . 

Definition 2.3 A Fuzzy Menger space is a triplet 
(X,Fα,t), where (X,Fα) is a FPM-space, t is a t-norm 
and the generalized triangle inequality 

Fα(x,z) (u+v)  t (Fα(x,z) (u), Fα(y,z) (v))  

holds for all x, y, z in X u, v > 0 and α.  [0,1]. 

The concept of neighborhoods in Fuzzy Menger 
space is introduced as 

Definition 2.4 Let (X,Fα,t) be a Fuzzy Menger 

space. If x  X,  > 0 and  (0,1), then (,) - 

neighborhood of x, called Ux (,), is defined by  

Ux (,) = {yX: Fα(x,y)()>(1-)}. 

An (,)-topology in X is the topology induced by 

the family {Ux (,): x  X,  > 0, α  [0,1] and (0,1)} 
of neighborhood. 

Remark: If t is continuous, then Fuzzy Menger 

space (X,Fα,t) is a Housdroff space in (,)-topology. 

Let (X,Fα,t) be a complete Fuzzy Menger space 

and AX. Then A is called a bounded set if  

lim inf Fα(x,y) (u) = 1 
      u x,yA 

Definition 2.5 A sequence {xn} in (X,Fα,t) is said to 

be convergent to a point x in X if for every >0and 

>0, there exists an integer N=N(,) such that xn 

Ux(,) n  N or equivalently Fα (xn, x; ) > 1- for 

all n  N and α[0,1]. 

Definition 2.6 A sequence {xn} in (X,Fα, t) is said to 

be cauchy sequence if for every  > 0 and  > 0, there 

exists an integer N=N(,) such that for all α[0,1] 

Fα(xn,xm; ) > 1-  n, m  N. 

Definition 2.7 A Fuzzy Menger space (X,Fα,t) with 
the continuous t-norm is said to be complete if every 
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Cauchy sequence in X converges to a point in X for all 

α[0,1]. 

Following lemmas are selected from [8] and [12] 
respectively in fuzzy menger space. 

Lemma 2.1. Let {xn} be a sequence in a Fuzzy 

Menger space (X, Fα,t) with continuous t-norm ∗ and t 

∗ t ≥ t. If there exists a constant k ∈  (0, 1) such that 

n n+1 n-1 n(x ,x ) (x ,x )F (kt)  F ( )t  for all t > 0 , 

α[0,1].and n = 1, 2, . . ., 

then {xn} is a Cauchy sequence in X. 

Lemma 2.2 . Let (X, Fα, t) be a Fuzzy Menger 
space. If there exists k ∈  (0, 1) such that 

(x,y) (x,y)F (kt)  F (t)  for all x, y ∈  X , for all 

α[0,1] and t > 0, then x = y. 

Definition 2.8[5] A pair ),( SA
 
of self mappings 

of a non-empty set X is said to be weakly compatible 
(or coincidentally commuting) if they commute at their 

coincidence points, that is, if SzAz   some Xz , 

then SAzASz  . 

Two compatible self-maps are weakly compatible, 
but the converse is not true (see [13, Example 1]). 
Therefore the concept of weak compatibility is more 
general than that of compatibility. 

Definition 2.9[6] A pair ),( SA
 
of self mappings 

of a Fuzzy Menger space (X,Fα,t) is said to satisfy the 

property (E.A), if there exists a sequence }{ nx  such 

that 

,limlim zSxAx nnnn    

 for some .Xz   

3. Main Results 

Now we prove our main result: 

Theorem 3.1. Let SBA ,, and T  be four self 

mappings of a Fuzzy Menger space (X,Fα,t). Suppose 
that 

(3.1) ),( SA  (or ),( TB ) satisfies the property 

(E.A); 

(3.2) ( ) ( ), ( ) ( );T X A X S X B X   

(3.3) ),( SA  and ),( TB  are weak compatible 

(3.4) One of the range of the mappings 

SBA ,, or T  is a closed subspace of X. (3.5) 

There exists a constant 1k  such that  

( , ) ( , )( ) ( ),Ax By Sx TyF kt F t   

for all Xyx , , for all α[0,1] and .0t  

Then SBA ,,  and T
 
have a unique common fixed 

point in .X   

Proof. If the pair ),( TB  satisfies the property 

(E.A), then there exists a sequence }{ nx  in X  such 

that  

,limlim zTxBx n
n

n
n




 

for some Xz  as n .  

Since ),()( XBXS   there exists a sequence 

}{ ny  in X
 

such that .nn SyBx   Hence, 

zSyn
n




lim . Also, since )()( XAXT  , there 

exists a sequence }{ ny
 
in X such that nn TxyA   

and so zyA n
n




lim . 

Assume that )(XS  is a closed subspace of X , 

then there exists a point Xu  such that Suz  . By 

inequality (3.4), we have  

( , ) ( , )( ) ( ).
n nAu Bx Su TxF kt F t   

On letting n , we get 

( , ) ( , )( ) ( ) 1,Au z z zF kt F t    

for all 0t , α[0,1]. and 1k . By Lemma 2.2 we 

have zAu   and hence zSuAu  .  

The weak compatibility of A  and S  implies that 

.SzSAuASuAz   Now, we assert that z  is a 

common fixed point of A  and S . From inequality 

(3.4), we have 

( , ) ( , )( ) ( ).
n nAz Bx Sz TxF kt F t   

On letting n , we get 

( , ) ( , )( ) ( ),Az z Az zF kt F t   

By Lemma 2.2, we have zSzAz  . On other 

hand, since ),()( XBXS   there exists a Xv  

such that .zAuSuBv   On using inequality 

(3.4), we have 

( , ) ( , )( ) ( ),Au Bv Su TvF kt F t   

or equivalently, 

( , ) ( , )( ) ( ),z Bv z zF kt F t   

for all 0t , α[0,1] and 1k . In view of Lemma 

2.2, we get zTvBv . .  

Similarly, the weak compatibility of B  and T  

implies that  BTvBz  TzTBv  . By inequality 

(3.4), we have  
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( , ) ( , )( ) ( ),Au Bz Su TzF kt F t   

and so 

( , ) ( , )( ) ( ).z Bz z BzF kt F t   

Owing to Lemma 2.2, we have zTzBz  . Thus 

in all, we have zTzSzBzAz   which shows 

that z is a common fixed point of mappings 

SBA ,, and T . 

Finally, we prove the uniqueness of z . Let 

)( zw  be another common fixed point of involved 

mappings SBA ,,  and T then using (3.4), we have 

( , ) ( , )( ) ( ),Az Bw Sz TwF kt F t   

or, equivalently, 

( , ) ( , )( ) ( ).z w z wF kt F t   

Appealing to Lemma 2.2, it follows that wz  . 

This completes the proof.  

The proof is similar if we assume that one of the 

subspace )(),( XSXB or )(XT  is closed. 

Remark 3.1. The conclusion of Theorem 3.1 
remains true if we replace inequality (3.4) by one of 

the following: for all 1k , 0, yx , α[0,1] and 

0t  

(3.5) 

( , ) ( , ) ( , ) ( , )( ) min{ ( ), ( ), ( )}Ax By Sx Ty Ax Sx By TyF kt F t F t F t   

, 

(3.6) 
2

( , ) ( , ) ( , )( ( )) ( ) ( )Ax By Ax Sx By TyF kt F t F t     

By setting BA   and TS   in Theorem 3.1, we 

can obtain a natural result for a pair of self mappings. 

Corollary 3.1. Let A  and S  be two self mappings 

of a Fuzzy Menger space ,(X Fα,t). Suppose that 

(3.10) );()( XAXS   

(3.11) ),( SA satisfies the property (E.A); 

(3.12) One of the range of the mappings A or S  

is a closed subspace of ,X   

(3.13) There exists a constant 1k  such that  

( , ) ( , )( ) ( ),Ax Ay Sx SyF kt F t   

for all Xyx , , α[0,1]. and .0t  

Then A  and S
 
have a unique common fixed point 

in .X   

Conclusion 

Theorem 3.1 is a generalization of some results in 
the sense it is proved for non-surjective mappings 
under weak compatibility which is more general than 
compatibility and without any requirement of 
completeness of the whole space and continuity of the 
involved mappings. 
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