
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 1, January - 2015

www.jmest.org

JMESTN42350307 83

An Analysis of Email Encryption using Neural
Cryptography

Sudip Kumar Sahana

Department of Computer Science & Engineering
Birla Institute of Technology, Mesra

Ranchi , India
sudipsahana@bitmesra.ac.in

Prabhat Kumar Mahanti
 Department of Computer Science & Applied Stat.

University of New Brunswick
Canada

pmahanti@unb.ca

Abstract— Encrypted Email using Neural
Cryptography is a way of sending and receiving
encrypted email through public channel. Neural
key exchange, which is based on the
synchronization of two tree parity machines, can
be a secure replacement for this method. This
paper present an implementation of neural
cryptography for encrypted E-mail where Tree
Parity Machines are initialized with random inputs
vectors and the generated outputs are used to
train the neural network. Symmetric key
cryptography is used in encryption and
decryption of messages.

Keywords— Cryptography; Tree Parity
Machine; Neural Key; Encryption; Decryption;
Neurons.

I. INTRODUCTION

Cryptography [2] is used to encrypt the information
and send it over public communication channel so that
unauthorized users cannot have the access to the
information and thus the confidentiality of the
message is not leaked. Encryption converts plain text
into cipher text and decryption revert back the cipher
text into original plain text. The neural cryptography
[5], a special type of cryptography, can be used to
send encrypted emails from the sender’s side and
then decrypt the email at the receiver’s end. Thus, the
emails can be sent over unsecured channels and the
chance of getting intercepted and message leaking is
minimized. In neural cryptography, the neural key
generated from the Tree Parity Machine (TPM) is
used for the encryption and decryption of messages.
To encrypt and decrypt the messages Rijndael
standard is used. The neural key is generated from
the Tree Parity Machine by synchronization rather
than by learning because learning is always slower
than synchronization. The electronic mails sent over
the communication channel are generally scanned by
the email service providers before delivering them to
the recipients who helps them to categorize as spam
and others. So, it is important that emails need to be
sent in encrypted form. It is essential when highly
confidential message are to be sent to dedicated
users which cannot revealed to unauthorized users as
it contains confidential data. Neural Cryptography has
been used in various fields like Neural Key Exchange
[1], Pseudo Random Number Generation [3], DES
Cryptanalysis [6] and AES [9][11]. In this type of

cryptography, Neural Key Exchange is used to
synchronize the two neural networks by
synchronization and Mutual learning is used in the
neural key exchange protocol. The neural key can be
generated once the network is synchronized.

II. METHODOLOGY

To increase the confidentiality [7], Encrypted Emails
using Neural Cryptography can be used to send and
receive encrypted emails over unsecured channels.
The generation of neural key is done through the
weights assigned to the Tree Parity Machine
[10][13][14][15] either by a server or one of the
systems. These inputs are used to calculate the value
of the hidden neuron and then the output is used to
predict the output of Tree Parity Machine, as shown in
Fig 1.

 Fig.1. Tree Parity Machine

sgn(x)= {

−1 𝑖𝑓 𝑥 < 0
0 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0

 (1)

Ϭi=sgn(∑ 𝑊𝑖𝑗 𝑋𝑖𝑗

𝑛
𝑗=0) (2)

 Τ =∏ 𝑛

𝑖=1 𝜎𝑖 (3)

The outputs of the Tree Parity Machine are compared.
If they are different then new inputs are assigned and
the process is continued. And if the outputs of the
Tree Parity Machine are same then the weights are
adjusted according to one of the learning rules i.e.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 1, January - 2015

www.jmest.org

JMESTN42350307 84

Hebbian learning rule [1][4], Anti-Hebbian learning
rule, or random walk method. The synchronization is
continued till the weights become same in both the
Tree Parity Machines [13]. Once the weights are
synchronized, they are used to generate the neural
key which is used to encrypt and decrypt the emails
using Rijndael method [8]. In electronic mails service,
generally all mails are scanned by the email service
providers before delivering them to the recipients. So
it is risky to send confidential in unencrypted form.
In our process, an extra layer of security is added to
the emails and thus it can be also prevented from
attackers from retrieving the emails by masquerading.
This is beneficial when some confidential email is to
be sent by companies, governments, etc and the
confidentiality and integrity is to be preserved. The
proposed flow diagram for Email Encryption using
Neural Cryptography is shown in Fig 2.

Fig.2. Flow diagram for proposed Neural Cryptography

Hebbian Learning Rule:

Wi
+

= Wi + ϬiXi ϴ(Ϭi τ) ϴ(τ
 A

 τ
 B

) (4)

Anti-Hebbian Learning Rule:

Wi
+

= Wi – ϬiXiϴ(Ϭi τ) ϴ(τ
 A

 τ
 B

) (5)

Random Walk:

Wi
+

= Wi + Xi ϴ(Ϭi τ) ϴ(τ
 A

 τ
 B

) (6)

The function ϴN (x) is a threshold function, which
returns either 0 or 1:

ϴN(x)={
0 𝑖𝑓 𝑥 ≤

𝑁

2

1 𝑖𝑓 𝑥 >
𝑁

2

 (7)

III. IMPLEMENTATION

Hardware and Software Specifications:
The application is implemented in java on Intel®
Core™ i7 3667U CPU @2.00GHz 2.5 GHz processor
with Internal RAM of 4GB with the operating system
as Windows 8. The essential software required for
running the application properly are Java platform with
the JDK version 1.7. The IDE used for building the
application is Netbeans 7.1.
The input, learning rule used and the output produced
for our implementation is as shown below:
Input: The input weights vector to the Tree Parity
Machine.
Learning Rule: Anti-Hebbian Learning Rule.
Output: The Neural Key which will be used to encrypt
and decrypt the emails.

IV. RESULTS AND DISCUSSIONS

The Neural Network has been used to generate the
neural key. The key has been generated by
synchronization of the two Tree Parity Machines. The
security of the system depends on the synaptic depth
of the weights used to generate the neural key [10].
The more the synaptic depth, the more it is difficult to
crack the key. The total possible neural keys from a
given value of Input vectors N, number of hidden
neurons K, and the synaptic depth L is (2L+1)

(K*N)
. The

length of the neural key depend on the values of L, K
and N. It is almost impossible to break the security of

The Algorithm used in neural key generation as
follows:
1. Assign weights to the TPM’s randomly.
2. Repeat till both the TPMs are synchronized.
 2.1 Assign the input vector X randomly

 2.2 Calculate the values of the hidden neurons
using (2).
 2.3 Calculate the values of the output neurons
using (3).

 2.4 The output of the TPM is compared
If outputs are different, go to 2.1
Else apply a learning rule (e.g. Hebbian, Anti-
Hebbian and Random Walk) to the weights
using equation (4), (5), (6) and (7).

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 1, January - 2015

www.jmest.org

JMESTN42350307 85

the system. The strength of the neural key can be
greatly increased by increasing the value of input
vectors N and the synaptic depth L.

Fig.3. TPM Initialized

 Fig.4. TPM Synchronized

The design interface allows the users to vary the
number of input neurons (N), the hidden layer (K) and
the range of weight (L). For a set of N, K and L, the
initial Tree Parity Machine and the synchronized one
is shown as in Fig 3 and 4 respectively for the
generation of the neural key. Fig 5 indicates the time
consumed for different inputs in milliseconds. Fig 6
and Fig 7 shows the set of inputs and the set of
corresponding outputs obtained.

Fig.5. Synchronization Time vs Inputs

Fig.6. Inputs(K*N)

Fig.7. Outputs(K*N)

The system may be vulnerable to geometric and
genetic attacks, but possibly these attacks cannot be
successful because the learning is always slower than
synchronization.

A. Geometric Attack

This attack is generally based on the geometric
interpretation [10] of the action of a perception.
The procedure is as follows:

1) If Output A!= Output B,the attacker doesn't

update output C

2) If Output A = Output B = Output C, attacker

updates using the learning rule

3) If Output A= Output B! = Output C; The attacker

does not update the weights but the two parties A and

B update their weights. Since in this case the attacker

does not update the weights so the synchronization of

parties is faster than his learning.

B. Genetic Attack

Genetic attack [12] is dangerous and spreading in
nature.

1) A biologically-inspired attack for a biologically-

inspired cryptosystem

2) A large population of TPMs trained with same

inputs are which is same as the weights of the two

parity machines.

3) At each steps of synchronization, the TPM

whose outputs are same as those of the TPM of the

parties continue synchronization while others die

away.

The final encrypted email and decrypted email for our
interface is shown in Fig 8 and 9 respectively.

0

20

40

60

80

100

0 10 20 30 40

Ti
m

e
(m

s)

Inputs (K*N)

Synchronization time vs Inputs

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 1, January - 2015

www.jmest.org

JMESTN42350307 86

 Fig.8. Encrypted Email

 Fig.9. Decrypted Email

V. CONCLUSION

Encrypted Email using Neural Cryptography method
proved it’s superiority in terms of security and
simplicity. In this approach the internal representation
of the Tree Parity Machine is only known to the
communicating parties. The weights of the Tree Parity
Machine are used to generate the neural key after the
synchronization is complete. As the intruder don’t
have the knowledge of the internal representation and
the weights are evolved by the learning rules based
on the output of the tree Parity Machines, so it
becomes difficult for the attacker to guess the hidden
neuron values and generate the key to decrypt the
message sent over unsecured channels. The novelty
of the approach is use of symmetric key concept
which is very simple and easy to implement. Finally,

this paper contributed an easy and more secure email
encryption method.

Further, the security of the key can be increased by
increasing the synaptic depth (L) of the key and the
number of inputs to the Tree Parity Machine (N).

REFERENCES

[1] A.Singh and A. Nandal,“ Neural Cryptography
for Secret Key Exchange and Encryption with AES”,
Int. Journal of Advanced Research in CS and
SE,Vol3(5) , pp376-381,May 2013.

[2] A.Forouzan, Cryptography and Network
Security , First Edition. McGraw-Hill, USA, 2007.

[3] D.A.Karras and V. Zorkadis, ”Recurrent
Neural Network Models for improved (Pseudo)
Random Number Generation in computer security
applications”, Publisher: World Scientific and
Engineering Academy and Society, ISBN:
9608052122

[4] A. Ruttor, ”Neural Synchronization and
Cryptography”. PhD thesis, Bayerische Julius-
Maximilians-Universität Würzburg, 2006.

[5] A.Klimov, A. Mityaguine and A. Shamir,
“Analysis of Neural Cryptography", Proceedings:
ASIACRYPT 2002, 8th International Conference on
the Theory and Application of Cryptology and
Information Security, Queenstown, New Zealand, Vol-
2501, pp 288-298, December , 2002.

[6] M. Matsui , “Linear Cryptanalysis Method for
DES Cipher”, Advances in Cryptology-Eurocrypt-
93,LNCS,Vol765 ,pp 386-397, 1994.

[7] A. Tardy-Corfdir and H. Gilbert, “A Known
plaintext attck of FEAL-4 and FEAl-6”, Advances in
cryptology-CRYPTO’91,Lecture Notes in Computer
Science, Vol.658,1992.

[8] J. Fran¸ C. Raymond1 and A. Stiglic2,
“Security Issues in the Diffie-Hellman Key Agreement
Protocol”,2009. Available on:
http://instantlogic.net/publications/DiffieHellman.pdf

[9] A. Jagadev, “Advanced Encryption Standard
(AES) Implementation”, M.Tech Thesis National
Institute of Technology, Rourkela. May, 2009.

[10] Neural_cryptography, Available on:
en.wikipedia.org/wiki/ .

[11] Advanced Encryption Standard, Available on:
en.wikipedia.org/wiki/.

[12] A. Ruttor, W. Kinzel and I. Kanter, "Genetic
attack on neural cryptography", Phys. Rev. E 73,
036121, 2006.

[13] M.Volkmer and S.Wallner, “Entity Auth-
entication and Authenticated Key Exchange with Tree
Parity Machines”, Available on : http://eprint.iacr.org
/2006/112, 2006.

http://www.jmest.org/
http://www.opus-bayern.de/uni-wuerzburg/volltexte/2007/2361/
http://www.opus-bayern.de/uni-wuerzburg/volltexte/2007/2361/
http://cryptome.org/neuralsub.ps

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 3159-0040

Vol. 2 Issue 1, January - 2015

www.jmest.org

JMESTN42350307 87

[14] P. Revankar, W.Z. Gandhare and D. Rathod ,
”Private inputs to Tree parity machine”, International
Journal of Computer Theory and Engineering, Vol. 2,
No. 4, pp 1793-8201,2010.

[15] T. Godhavari, N.R. Alainelu and R.
Soundararajan, “Cryptography using neural network”,
IEEE Indicon 2005 Conference, Chennai, India,
pp.258-261, Dec. 2005.

Sudip Kumar Sahana, male, is
currently working as Asst. Prof. in
the Department of Computer
Science and Engineering,
B.I.T(Mesra), Ranchi, India. He
received the B.E. Degree in
Computer Technology from
Nagpur University, India in 2001,
the M.Tech. Degree in Computer
Science in 2006 and Ph.D in

Engineering in 2013 from the B.I.T (Mesra), Ranchi,
India. His major field of study is in Computer Science.
His research and teaching interests include Soft

Computing, Evolutionary Algorithms, Artificial
Intelligence and High Performance Computing. He is
author of number of research papers in the field of
Computer Science.

Prabhat Kumar Mahanti, , male, is
Professor of Dept of Computer
Science and Applied Statistics
(CSAS), University of New
Brunswick Canada. He obtained his
M.Sc. from IIT-Kharagpur, India, and
Ph.D. from IIT-Bombay India. His

research interests include Software engineering,
Software Metrics, Reliability Modelling, Modelling and
Simulation, Numerical Algorithms, Finite Elements,
Mobile and Soft computing, Verification of Embedded
Software, Neural Computing, Data Mining, and Multi-
Agent Systems. He has published research papers,
technical reports, etc to his credit in national and
International journals of repute.

http://www.jmest.org/

