
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 1, January - 2015 

www.jmest.org 

JMESTN42350307 83 

An Analysis of Email Encryption using Neural 
Cryptography 

 
Sudip Kumar Sahana  

Department of Computer Science & Engineering 
Birla Institute of Technology, Mesra 

Ranchi , India  
sudipsahana@bitmesra.ac.in 

Prabhat Kumar Mahanti 
 Department of Computer Science & Applied Stat. 

University of New Brunswick  
Canada  

pmahanti@unb.ca

Abstract— Encrypted Email using Neural 
Cryptography is a way of sending and receiving 
encrypted email through public channel. Neural 
key exchange, which is based on the 
synchronization of two tree parity machines, can 
be a secure replacement for this method. This  
paper  present an implementation of neural 
cryptography for encrypted E-mail where Tree 
Parity Machines are initialized with random inputs 
vectors and the generated outputs are used to 
train the neural network.  Symmetric key 
cryptography is used in encryption and 
decryption of messages. 
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I. INTRODUCTION  

Cryptography [2] is used to encrypt the information 
and send it over public communication channel so that 
unauthorized users cannot have the access to the 
information and thus the confidentiality of the 
message is not leaked. Encryption converts plain text 
into cipher text and decryption revert back the cipher 
text into original plain text. The neural cryptography 
[5], a special type of cryptography, can be used to 
send encrypted emails from the sender’s side and 
then decrypt the email at the receiver’s end. Thus, the 
emails can be sent over unsecured channels and the 
chance of getting intercepted and message leaking is 
minimized. In neural cryptography, the neural key 
generated from the Tree Parity Machine (TPM) is 
used for the encryption and decryption of messages. 
To encrypt and decrypt the messages Rijndael 
standard is used. The neural key is generated from 
the Tree Parity Machine by synchronization rather 
than by learning because learning is always slower 
than synchronization. The electronic mails sent over 
the communication channel are generally scanned by 
the email service providers before delivering them to 
the recipients who helps them to categorize as spam 
and others. So, it is important that emails need to be 
sent in encrypted form. It is essential when highly 
confidential message are to be sent to dedicated 
users which cannot revealed to unauthorized users as  
it contains confidential data. Neural Cryptography has 
been used in various fields like Neural Key Exchange 
[1], Pseudo Random Number Generation [3], DES 
Cryptanalysis [6] and AES [9][11]. In this type of 

cryptography, Neural Key Exchange is used to 
synchronize the two neural networks by 
synchronization and Mutual learning is used in the 
neural key exchange protocol. The neural key can be 
generated once the network is synchronized.  

II. METHODOLOGY 

To increase the confidentiality [7], Encrypted Emails 
using Neural Cryptography can be used to send and 
receive encrypted emails over unsecured channels. 
The generation of neural key is done through the 
weights assigned to the Tree Parity Machine 
[10][13][14][15] either by a server or one of the 
systems. These inputs are used to calculate the value 
of the hidden neuron and then the output is used to 
predict the output of Tree Parity Machine, as shown in 
Fig 1.  
 

 
 

  Fig.1. Tree Parity Machine 
 

sgn(x)= {

−1 𝑖𝑓 𝑥 < 0
0  𝑖𝑓 𝑥 = 0
1  𝑖𝑓 𝑥 > 0

 (1) 

 
Ϭi=sgn( ∑  𝑊𝑖𝑗  𝑋𝑖𝑗

𝑛
𝑗=0  ) (2) 

    
       Τ =∏  𝑛

𝑖=1 𝜎𝑖 (3) 

 
The outputs of the Tree Parity Machine are compared. 
If they are different then new inputs are assigned and 
the process is continued. And if the outputs of the 
Tree Parity Machine are same then the weights are 
adjusted according to one of the learning rules i.e. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 1, January - 2015 

www.jmest.org 

JMESTN42350307 84 

Hebbian learning rule [1][4], Anti-Hebbian learning 
rule, or random walk method. The synchronization is 
continued till the weights become same in both the 
Tree Parity Machines [13]. Once the weights are 
synchronized, they are used to generate the neural 
key which is used to encrypt and decrypt the emails 
using Rijndael method [8]. In electronic mails service, 
generally all mails are scanned by the email service 
providers before delivering them to the recipients. So 
it is risky to send confidential in unencrypted form.  
In our process, an extra layer of security is added to 
the emails and thus it can be also prevented from 
attackers from retrieving the emails by masquerading. 
This is beneficial when some confidential email is to 
be sent by companies, governments, etc and the 
confidentiality and integrity is to be preserved. The 
proposed flow diagram for Email Encryption using 
Neural Cryptography is shown in Fig 2. 
 

 
 
Fig.2. Flow diagram for proposed Neural Cryptography 

 

 
Hebbian Learning Rule:  
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Anti-Hebbian Learning Rule: 
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Random Walk: 
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The function ϴN (x) is a threshold function, which 
returns either 0 or 1: 

ϴN(x)={
0   𝑖𝑓 𝑥 ≤

𝑁

2

1 𝑖𝑓 𝑥 >
𝑁

2

  (7) 

 

III. IMPLEMENTATION 

Hardware and Software Specifications: 
The application is implemented in java on Intel® 
Core™ i7 3667U CPU @2.00GHz 2.5 GHz processor 
with Internal RAM of 4GB with the operating system 
as Windows 8. The essential software required for 
running the application properly are Java platform with 
the JDK version 1.7. The IDE used for building the 
application is Netbeans 7.1. 
The input, learning rule used and the output produced 
for our implementation is as shown below: 
Input: The input weights vector to the Tree Parity 
Machine.  
Learning Rule:  Anti-Hebbian Learning Rule. 
Output: The Neural Key which will be used to encrypt 
and decrypt the emails. 

IV. RESULTS AND DISCUSSIONS 

The Neural Network has been used to generate the 
neural key. The key has been generated by 
synchronization of the two Tree Parity Machines. The 
security of the system depends on the synaptic depth 
of the weights used to generate the neural key [10]. 
The more the synaptic depth, the more it is difficult to 
crack the key. The total possible neural keys from a 
given value of Input vectors N, number of hidden 
neurons K, and the synaptic depth L is (2L+1)

(K*N)
. The 

length of the neural key depend on the values of L, K 
and N. It is almost impossible to break the security of 

The Algorithm used in neural key generation as 
follows: 
1. Assign weights to the TPM’s randomly. 
2. Repeat till both the TPMs are synchronized. 
     2.1  Assign the input vector X randomly 

  2.2 Calculate the values of the hidden neurons 
using (2). 
  2.3 Calculate the values of the output neurons 
using (3). 

      2.4  The output of the TPM is compared 
If outputs are different, go to 2.1 
Else apply a learning rule (e.g. Hebbian, Anti-
Hebbian and Random Walk) to the weights 
using equation (4), (5), (6) and (7). 
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the system. The strength of the neural key can be 
greatly increased by increasing the value of input 
vectors N and the synaptic depth L. 

 
Fig.3. TPM Initialized 

 
     Fig.4. TPM Synchronized 

The design interface allows the users to vary the 
number of input neurons (N), the hidden layer (K) and 
the range of weight (L). For a set of N, K and L, the 
initial Tree Parity Machine and the synchronized one 
is shown as in Fig 3 and 4 respectively for the 
generation of the neural key. Fig 5 indicates the time 
consumed for different inputs in milliseconds. Fig 6 
and Fig 7 shows the set of inputs and the set of 
corresponding outputs obtained. 

 

Fig.5.  Synchronization Time vs Inputs 

 
Fig.6. Inputs(K*N) 

 

 
Fig.7.  Outputs(K*N) 

 
The system may be vulnerable to geometric and 
genetic attacks, but possibly  these attacks cannot be 
successful because the learning is always slower than 
synchronization. 

A. Geometric  Attack 

This attack is generally based on the geometric 
interpretation [10] of the action of a perception. 
The procedure is as follows: 

1) If Output A!= Output B,the attacker doesn't 

update output C 

2) If Output A = Output B = Output C, attacker 

updates using the learning rule 

3)  If Output A= Output B! = Output C; The attacker 

does not update the weights but the two parties A and 

B update their weights. Since in this case the attacker 

does not update the weights so the synchronization of 

parties is faster than his learning. 

B. Genetic Attack 

Genetic attack [12] is dangerous and spreading in 
nature. 

1) A biologically-inspired attack for a biologically-

inspired cryptosystem 

2) A large population of TPMs trained with same 

inputs are which is same as the weights of the two 

parity machines. 

3) At each steps of synchronization, the TPM 

whose outputs are same as those of the TPM of the 

parties continue synchronization while others die 

away. 
 
The final encrypted email and decrypted email for our 
interface is shown in Fig 8 and 9 respectively. 
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 Fig.8. Encrypted Email 

 

   Fig.9. Decrypted Email 

V. CONCLUSION 

Encrypted Email using Neural Cryptography method 
proved it’s superiority in terms of security and 
simplicity. In this approach the internal representation 
of the Tree Parity Machine is only known to the 
communicating parties. The weights of the Tree Parity 
Machine are used to generate the neural key after the 
synchronization is complete. As the intruder don’t 
have the knowledge of the internal representation and 
the weights are evolved by the learning rules based 
on the output of the tree Parity Machines, so it 
becomes difficult for the attacker to guess the hidden 
neuron values and generate the key to decrypt the 
message sent over unsecured channels. The novelty 
of the approach is use of  symmetric key concept 
which is very simple and easy to implement. Finally, 

this paper contributed an easy and more secure email 
encryption method. 
 

Further, the security of the key can be increased by 
increasing the synaptic depth (L) of the key and the 
number of inputs to the Tree Parity Machine (N). 
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