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Abstract—In this paper an EOQ inventory 

model is developed in which inventory is depleted 
not only by demand but also by deterioration at a 
generalized weibull distributed rate, assuming the 
demand rate a ramp type function of time. A brief 
analysis of the cost involved is carried out by an 
example. 
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1. Introduction: 
Harris and Wilson’s [1] classical inventory model 

assumes that the depletion of inventory is due to a 
constant demand rate. But in many inventory models, 
the effect of deterioration is very important. All most 
items deteriorate with time. All food items, drugs, 
pharmaceuticals and radioactive substances are few 
examples of items in which deterioration take place 
during the normal storage period so this loss must be 
taken into account when analyzing the inventory 
system, and then the problem of decision makers is 
how to control and maintain inventories of 
deteriorating items. Many researchers like Ghare and 
Schrader [2], Goel and Aggrawal [3], Covert and Philip 
[4], Aggrawal [5], Cohen [6], Mishra [7] are very 
important in this connection. As the time progressed, 
several other researchers developed inventory models 
with deteriorating items with time dependent demand 
rates. In this connection, related works may refer to 
Ritchie [8], Tadikamalla [9], Ghose and Chaudhari 
[10], Donaldson [11], Silver [12], Datta and pal [13], 
Deb and Chaudhari [14], Pal and mandal [15]. Mishra 
[7] developed a two parameter Weibull distribution 
deterioration for an inventory model. This was 
followed by many researchers like Dev and Patel [16], 
Shah and Jaiswal [17], Jalan et al. [18], Giri and Goyal 
[19], Singh and Sehgal [20] etc. 

In the present paper, efforts have been made to 
analyze an EOQ inventory models for items that 
deteriorate at a generalized Weibull distributed rate, 
assuming the demand rate a function of time. 
Shortages are allowed. Such demand pattern is 
generally seen in newly launched fashion goods, 
cosmetics, garments, automobiles etc; for which the 
demand increases with time as they launched into the 
market and after some time it becomes constant. The 
numerical examples is presented . 

2. Assumptions and Notations: 

The fundamental assumptions and notations used 
in this paper are given as follows: 

(a) Replenishment size is constant and its rate is 
infinite. 

(b) Lead time is zero. 

(c) T is the fixed length of each production cycle. 

(d) Ch is the inventory holding cost per unit per 
unit time. 

(e) Cs is the shortage cost per unit per unit time. 

(f) Cd is the unit deterioration cost. 

(g) The deterioration rate function follows a 
generalized Weibull* distribution 

( ) 22 1 ,0 1, 0, 0tZ t t e t
ββ λλ β λ β− −= < << > >  

Where λ is the scale parameter, β is the shape 
parameter and t is the time of deterioration. 

(h) Shortages are allowed and completely 
backlogged. 

(i) S is the maximum inventory level of each 
ordering cycle. 

(j) The demand rate R(t) is assumed to be a 
ramp type function of time: 

R(t) = D0[t-(t-μ)H(t-μ)], D0 > 0 

Where H(t-μ) is the well-known Heaviside’s 
function defined as follows: 

H(t-μ) = 1, t ≥ μ 

   = 0, t < μ 

3. Model development: 
Let Q be the total amount of inventory produced or 

purchased at the beginning of each period and after 
fulfilling backorders let us assume we get an amount 
S (>0) as initial inventory. Due to reasons of market 
demand and deterioration of the items, the inventory 
level gradually diminishes during the period (0, t1) and 
finally falls to zero at 1tt = . Shortages are allowed 
during the period (t1, T), which are completely 
backlogged. 
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The inventory level I(t) of the system at any time t 
over [0, T] can be described by the following 
equations: 

( ) ( ) ( ) 10,)( tttRtItZ
dt

tdI
≤≤−=+   (3.1) 

and 

TtttR
dt

tdI
≤≤−= 1),()(   (3.2) 

The boundary conditions are 

I(t1) = 0 and I(0) = S  (3.3) 

By assumptions of (g) and (j) in section (2) and 
assuming µ < t1, the two governing Eqs. (3.1) and (3.2) 
becomes: 

( ) ( ) ( ) µλβ
βλβ ≤≤−=+ −− ttDtIet

dt
tdI t 0,0

1   (3.4) 

( ) ( ) 10
1 , ttDtIet

dt
tdI t ≤≤−=+ −− µµλβ

βλβ   (3.5) 

and 

( ) TttD
dt

tdI
≤≤−= 10 ,µ   (3.6) 

Now by using the boundary conditions (3.3), the 
solution of above three equations are respectively 
given as: 
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And 

( ) ( ) TttttDtI ≤≤−−= 110 ,µ   (3.9) 

When 0 < λ <1, we neglect the second and higher 
terms of λ, equation (3.7) and (3.8) becomes: 
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Since I(t1) = 0, we get from equation (3.8) with 
neglecting second and higher order terms of α as: 
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  (3.12) 
Hence the total number of deteriorated units during 

[0, t1] is 

Dt = Initial inventory – Total demand during [0, t1] 
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Evaluating the above two integrals and using 
equation (3.12), we get as 
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The total number of inventory holding during the 
period [0, t1] is 
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[From (3.7) & (3.8)] 

Evaluating the above integrals and neglecting the 
second and higher order of α, we get as: 
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The total shortage quantity during the interval [t1, 
T] is 
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Then the average total cost per unit time is given 
by 

( )
T
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tCT shtd 21
1 ++=  

Now substituting the expressions for Dt, I1, I2 given 
by the equations (3.13), (3.14) and (3.15) respectively 
and then eliminating S by the equation (3.12), we get 
as: 
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To minimize the average total cost per unit time, 
the optimal value of 1t , say ∗

1t  can be obtained by 
solving the following equation 
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Which also satisfies the condition 
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After solving, the condition ( ) 0
1

1 =
dt

tdTC  gives the 

equation: 
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Since φ(0) < 0 and φ(T) > 0, then φ(0).φ(T) < 0. So 
there exits one solution t1 = t1* ∈ (0, T) of equation 
(3.17), which can be easily solved by Newton-
Raphson method. 

Also, 

Substituting t1 = t1* in equation (3.12), we find the 
optimum value of S, given as: 
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Again the total amount of backorder at the end of 

the cycle is ( )10 tTD −µ . 

Therefore 

( )10 tTDSQ −+= µ . 

So the optimal value of Q is given by 

( )

( ) ( )

0 1

1
1

0 1 2 1 2

Q S D T t

tD T
β

µ

λ µ λ µµ
β β β

∗ ∗ ∗

∗ +

= + −

 
= − − + + + + 

(3.19) 

And the minimum value of the average total cost 
( )1tTC  is ( )∗1tTC  as from equation (3.16). 

4. Numerical example 

Let the values of parameters of the inventory 
model be 

C1 = Rs 3 per unit per year, C2 = Rs 15 per unit per 
year, C3 = Rs 5 per unit, α = 0.001, β = 2, 

D = 50 units, n = 0.5 and T = 1 year. 

Under the above parameter values and according 
to equation (3.13), we obtain the optimum value of t1 

as 83308.01 =∗t  year. 

This value of t1 also satisfies the sufficient condition 
for optimality. 

Taking 83308.01 =∗t  year, we get the following 
optimal values for total purchase quantity and the 
initial inventory 

01204.50=∗Q  units and 71315.34=∗S  units. 

The minimum average total cost per unit time is 
found to be 76.46476C Rs∗ =  per year. 

5. Conclusion 
In this paper, we find that the optimal reorder time (

∗
1t ) of the proposed EOQ model is unique and is 

independent of µ and D0 [by eq. (3.17)]. But the 
minimum average total cost per unit time ( )∗1tTC , the 

optimal initial inventory ( ∗S ) and the optimal total 
purchase quantity ( ∗Q ) are dependent on the value of 
µ and D0. 
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