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Abstract— In this paper we consider stability
problem for switched linear systems. This
problem can be formulated as a convex
minimization problem. By modifying the cost
functions we apply the vector-valued Newton’s
method.
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I. INTRODUCTION

Let A be n x n real matrix. If all eigenvalues of A lie
in the open left half plane then A is said to be Hurwitz
stable. Hurwitz stability of A is equivalent to the
following: There exists positive definite symmetric
matrix P such that

ATP+PA<0 1)

where the symbol “T” stands for the transpose, and
the symbol “<” for negative definiteness. Hurwitz
stability of A implies the asymptotic stability of the zero
solution of the linear system

x = Ax )

where x =x(t) e R® . If the matrix A switches
between N matrices Ay, Ay, ..., Ay, ie.
A € {A,,A,, .., Ay} then the obtained system

x = Ax Q)

is called a switched system. Sufficient condition for
the asymptotic stability of the zero solution of (3) is the
existence of quadratic Lyapunov function of the form

V(x) = xTPx
where P > 0 and
ATP+PA; <0(i=1.2,..,N). (4)
The matrix P is called a common solution to the
Lyapunov inequalities (4).

The stability problem of linear switched systems
has been investigated in a lot of works (see [1-11] and
references therein).

The papers [3-11] study theoretical results for the
existence of a common solution to (4).

The papers [12-14] consider numerical algorithms
for a common positive definite solution in the case of
existence.

In this paper we apply Newton’s root finding
method for the numerical generating of a common
positive definite solution to (4).

Il. LYAPUNOV EQUATIONS
In this section, we consider the Lyapunov inequality
(1) which is equivalent to the following equation.

ATP +PA=—Q (5)

where Q > 0. We are looking for a positive definite
solution P of (5). In the iteration steps, the obtained P
is guaranteed to be symmetric. The following theorem
shows that in the case of Hurwitz stability of A this
implies the positive definiteness of P.

Theorem 1. Assume that A is Hurwitz stable. If
there exists a symmetric solution P to (5) then P > 0.

Proof: Define
P =f eATtQeAtdt (6)
0

where e4t stands for the matrix exponential.

Since A is Hurwitz stable, the matrix AT is also

Hurwitz stable. Therefore e4t and e4't define
exponential functions with exponents Re(4;) -t <0
where A; are the eigenvalues of A. This implies that the
integral in (6) is well defined. The matrix P is
symmetric, positive definite and satisfies the following
relation

ATP+PA=—Q
(see [15]). Then
AT(P-P)+(P-P)A=0.
Multiplying by e4"t and e4t give
0 =eAt[AT(P—P)+ (P - P)A]e

= %[eATt(P — P)et].
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The integration from 0 to oo yields
[e4"t(P — P)e™t]. = 0.

Using the fact that e4t - 0, e4’t > 0 as t — o we
obtain

0—-(P-P)=0
andP =P > 0.

We are looking for a iterative procedure for a
common P satisfying (4 ). Theorem 1 allows to
guarantee positive definiteness of P obtained at each
step of iteration.

I1l. MoDIFIED NEWTON’S METHOD
Consider a differentiable function F: R™ - R™ and
the following equation

F(x) =0. @)

Here

x = (x1, %, e, Xy)T € R ,
FOO) = (RGO, (), s ()

Denote the Jacobian matrix by J(x), i.e.

of,
o= (%

)

) G,j=12,..,n).

The Newton method is a method for an
approximate solution of (7) and starting from a suitable
initial point x° the iteration is defined by

xk =xkt — JRD)TF () (k=1,2,..)

_ n(n+1)

Define r = 3 and
X1 X2 Xn
P=pP@=|"7 T e
Xn  Xop-1 " Xr

The matrix inequalities (4) are equivalent to
filx) = AmaX(AiTP +PA)<0(i=12..,N) (8)

where x = (x;, %, .., %)7 ER", Anax(") stands for
the maximal eigenvalue.

In the case of simple maximum eigenvalue of
ATP(x) + P(x)A, the gradient of f(x) = Anax(ATP(x) +
P(x)A) should be easily calculated. Indeed since the
function x - ATP(x) + P(x)A is linear then

ATP(x) + P(x)A= > x;0Q;.
; ]

Then Vf(x) = (wTQu, ..., u" Q,u), where “V” stands
for the gradient, u is the wunit eigenvector
corresponding to the maximum eigenvalues of
ATP(x) + P(x)A (see [12)).

Proposition 1. The function f;(x) is convex for
each i.

Proof: The relation P — ATP + P4, is linear. On the
other hand for symmetric C, the function C — A, (C)
is convex [16]. Therefore f;(x) is convex as a
composition of linear and convex functions.

O

The system (4) has a common solution P > 0 if and
only if there exists x, € R" such that

filx) <0G =12..,N). (9)

In order to apply Newton’s method instead of the
minimization of the functions f;(x), we consider the
system of equations

fix)=0(@(=12,..,N).

Without loss of generality we can setr = N. Indeed
if N > r, we can combine some function by using the
operation maximum. For example if N=r 41 then
define

91 (x) = max{f; (x), f2(x)},
gi(x) = fi+1(x) (L = 2;3; ’N)

This operation preserves convexity. If N < r we use
the operation of duplication. Thus from the now we
assume thatr = N.

Define F = (f}, f>, ..., f)T and consider the equation
F(x)=0 (20)

where x € R".

If we apply the classical Newton’s method to (10)
we obtain the trivial sequence P, — 0, since the
functions f;(x) are positive homogenous. To avoid this
we impose the condition trace(P) = 1. The following
proposition shows that this does not violate the
generality.

Proposition 2. Assume that P > 0 and ATP + PA <
0. Then ATP, + P.A < 0 where P, =

trace(P)

Proof: From P = (p;;) >0 it follows that for all
x €R", x # 0, xTPx > 0. Taking

xt=(0,..,0,1,0,...,007

we obtain p;; > 0. Therefore trace(P) > 0 and

ATP, + PA = [ATP + PA] < 0.

trace(P)

The condition trace(P) = 1 reduces the number of
variables from r tor — 1. To solve (10) the following
algorithm is suggested.

Algorithm 1.

1) Consider the equation (10). Take initial matrix
Q =diag(1,2,2,..,2) and consider ATP + PA, = —Q.

WwWWw.jmest.org

JMESTN42350279

365


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 3159-0040
Vol. 1 Issue 5, December - 2014

The solution of this matrix equation let be P,. Dividing
P, by trace(P,) gives the initial iteration x°.

the functions f(x) by fi(x)+
(i=1,2,..,r—1). Apply Newton’s iteration

2) Replace

1
2trace(Pg)

xk — xk—l _](xk—l)—lﬁv(xk—l)

Where ﬁ = (fl' fz, "'JfT—l)'

3) Iffi(x*)<0(=12,..r—1)for some k then
stop. Otherwise continue.

Example 1. Consider the Hurwitz stable matrices

A = (:1 :g) and 4, = (:3 i)

The corresponding functions are:
f1(0) = Amax(ATP(x) + P(x)Ay),
f2(%) = Amax(ALP(x) + P(x)A,)
where

_ (" X2
P(x) = (xz 1-— xl)'
For the matrix
(1 0
Q= (0 2)
the unigue solutions of
ATP+PA, =—Q (i=12)

is
_ (0972 —0.472
PO_(—0.472 0.361 )
Hence
L =(0.729 —0.354)
trace(P,) °  \-0.354 0.271

and take the initial point x° = (0.729, —0.354)". For
this point calculations give the following maximum
eigenvalues and its corresponding unit eigenvectors:

Amax(AIP(xo) + P(xO)Al) = —-0.75
the maximum eigenvector: u! = (1,0)7,
Amax(ATP(x°) + P(x°)A,) = 0.8333

](x0)=(2.;§8 0;21)
and
= (Gae)t Comar Soos) (omas 1 037

(0.130)
0.119/°

After 3 steps, we get f;(x3) <0 and f,(x3) <0
(see Table I). Hence for the matrix

. _ (0390 —0.247
P=pPx")= (—0.247 0.609 )

ATP + PA; < 0 (i = 1,2) are satisfied.

Table |
k xk f1(x%) f2(x)
1 (0.130,0.119)T —-0.221 1.268
2 (0.367,—0.135)7 -0.373 0.278
3 (0.390,—0.247)7 —0.285 —0.074

Example 2. Consider the Hurwitz stable matrices

n=C Ha=(G 7)ada= (] 5)

The corresponding functions are:
fix) = max(/lmax(AIP(x) + P(x)A,),
Amax (A5 P (x) + P(x)A2)),
f2(x) = Amax(ATP(x) + P(x)As).
where

PCx) = (J)Z 1 fle)'

For the matrix
_(1 0
Q= (0 2)
the unique solutions of
ATP+PA, =—Q(i=12)

the maximum
u? = (—=0.7090,—0.7051)7.

eigenvector: P, = (0.415 0.083)

0.083 0.583

Therefore and trace(Py) =1 . Take the initial point x° =
(0.416,0.083)T. For this point calculations give the
fi(x°) = —0.75, following maximum eigenvalues and its corresponding
£,(x%) = 0.833 unit eigenvectors:
and Amax(ATP(x°) + P(x)A;) = -1,

u' = (1,0)7,
Amax(AZP(x®) + P(x°)A;) = 0.680,
u? = (—0.082,0.996)7,
Amax(A5P(x°) + P(x°)A3) = 0.567,
u® = (—0.987,0.160)T.

Vfl(x)lxzxo = (_21_2)1
V()0 = (2.988,0.961).

Therefore the

(i), ()" atx®is

Jacobian matrix of F(x)=
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X

Therefore
f1(x%) = max(—2.105,0.074) = 0.680,
f(x%) = 0.567.
and
Vi ()|yepo = (—1.191,-5.767),
V£ (0)|,oy0 = (0.786,—3.478).

The Jacobian matrix of F(x) = (f;(x), fz(x))T at x°

160 =(om6 “476)
Therefore . |
e it
(0:336) '

After 16 steps, we get f;(x°) < 0 and f,(x1%) < 0

(see Table II). Hence for the matrix

P = P(x'6) = (0.461 0.318)’

0.318 0.538
ATP + PA; < 0 (i = 1,2,3) are satisfied.
Table Il

k xk f1(xk) fz(xk)
1 (0.180,0.336)7 1.035 0.224
2 (0.581,2.025)7 8.502 6.641
3 (0.553,0.313)7 0.108 —-0.122
5 1 (0.293,0.919)7 2.527 1.514
16 (0.461,0.318)7 —0.063 —0.074

Example 3. Consider the Hurwitz stable matrices

-32 5 12 -4 5 2
A;=1-10 1 -2 |,A,=|-6 -11 3
-9 7 =17 1 0 -10
-5 -3 1 -6 1 =2
A;=| 2 -4 2>,A4=<3 -3 4
4 1 =5 1 -2 -4
-10 -4 -2
andAs=| -7 -8 20 |
7 =2 =22
The corresponding functions are:
fi() = Amax (A7 P(x) + P(x)A;)
where

X1 X2 X3
P(x) =Xz X4 X5 .
X3 x5 1 - x1 - X4

1 00
Q=<O 2 0)
0 0 2

the unigue solutions of
ATP+PA; =—-Q(i=12)

For the matrix

is
0.0512 —0.138 0.027
P,=(-0.138 0588 —0.128|.
0.027 —0.128 0.093
Hence

| ( 0069 —0188 0.037 )
—— _.p,=[-0188 0803 —0174
trace(Po) 0.037 —0174 0.126

and the initial point is
x% = (0.069,-0.188,0.037,0.803, —0.174)T.
For this point calculations give the following:
F(x°) = (-1.363,1.952,0.408,1.843,11.909)7,

J(x%)
—64 —-20 —17.999 0 0
—8.937 —-9.033 4.011 1.273 0.357
=| -5916 —-4.210 -4.211 -0.128 0.677
0.047 -—-3.062 —6.494 5374 —2.547
21.888 —8.146 15.925 35,579 -—11.025

and x* = (-0.090,0.252,0.079,0.617, —0.216)7.
After 36 steps, we get
x36 =(0.421,-0.138,—0.044,0.281,—0.028)7

and
F(x3%) = (=0.590, —0.360, —0.608, —0.447, —0.164)".
Hence ATP + PA; < 0 (i = 1,2,3,4,5) where

0421 -0.138 -—-0.044
P=P(x%*)=(-0138 0281 -0.028
—0.044 -0.028 0.297
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