
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 2, February - 2015 

www.jmest.org 

JMESTN42350259 1 

SOLID Principles in Software Architecture and 
Introduction to RESM Concept in OOP 

Vamsi Krishna Madasu 
Department of Computer Science 

University of Bridgeport 
Bridgeport, CT-06604, USA 

vmadasu@my.bridgeport.edu 

Trinadh Venkata Swamy Naidu Venna 
Department of Computer Science 

University of Bridgeport 
Bridgeport, CT-06604, USA 
tvenna@my.bridgeport.edu 

 
Tarik Eltaeib 

Department of Computer Science 
University of Bridgeport 

teltaeib@my.bridgeport.edu 

 

Abstract- The article SOLID Principles in 
Software Architecture and Introduction to RESM 
concept in OOP gives an outlook of the SOLID 
principles and to the concepts of Reusability, 
Extensibility, Simplicity and Maintainability 
(RESM) in Object Oriented Programming. 

 

Keywords- SOLID, OOP, Reusability, 

Extensibility, Simplicity , Maintainability 

I. INTRODUCTION 
 

SOLID are the five basic principles which help in 
creating good software architecture. SOLID is an 
acronym where 

S stands for SRP (Single Responsibility Principle) 

O stands for OCP (Open Closed Principle) 

L stands for LSP (Liskov Substitution Principle) 

I stand for ISP (Interface Segregation Principle) 

D stands for DIP (Dependency Inversion Principle). 

Using these SOLID principles we can build 
efficient, reusable and non-fragile software which is 
sustainable and maintainable for the long term needs. 
Reusability, Extensibility, Sustainability and 
Maintainability (RESM) are the major issues 
concerned with the functional programming. To 
overcome these issues and to build dynamic software 
we need SOLID principles. SOLID principles gave a 
suitable answer to develop an efficient Software 
architecture that can overcome RESM problems. 

 

II. EXPLINATION 
 

S-SRP (Single Responsibility Principl 

 

 
Fig.1 

In the code shown in figure.1 the Customer class 
has an Add function which adds customers to the 
Database. There is a problem in this code. The Add 
function adds customers to the database and at the 
same time it logs the exception in a log file, which the 
Customer class is not supposed to do. So SRP says 
that the class should have only one responsibility and 
not multiple. 

 

 
Fig.2 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 2, February - 2015 

www.jmest.org 

JMESTN42350259 2 

 
Fig.3 

 
The code shown in Fig.2 and Fig.3 give the 

solution where we have created a separate Logfile 
class to record the exceptions and we have inherited 
the customer class from Logfile. 

O- OCP (Open Closed Principle) 

Open Close Principle says that a class should be 
closed for modification and should be open for 
Extension. For example if the customer class has 
Gold customers, silver customers. In case in future if 
we want to add a new customer type then we have to 
modify the customer class and we have to test the 
functionality again. Instead we can make the class 
should be closed for modification and should be open 
for extension. In other words rather than modifying the 
class we go for extension. 

 

Fig.4 

The code shown in the Fig.4 gives the solution of 
the square/circle problem, in which square and circle 
are both child classes derived from Shape class. But 
they have pure virtual function called Draw() which is 
open to use but closed for modification. 

L-LSP (Liskov Substitution Principle) 

This is simply an extension to OCP. Liskov 
Substitution Principle says that parent should easily 
replace the child. A parent class object should be able 
to refer the child class objects. A child class can be 
derived to use the functionality of the parent class but 
it should be a replacement of its parent class. If the 

child class also does the same function of a parent 
class. Then we say that it is violating LSP 

I-ISP (Interface Segregation Principle) 

Interface Segregation Principle states that client 
should not be forced to use an interface if it does not 
need it. Clients should only know about the methods 
or interface which are interested to them. Robert 
Martin formulated this principle when creating 
software for a Xerox. While developing the software, 
even a minor change would take redeployment of an 
hour. Because, the classes that are connected to the 
print class could see the methods of it. 

D-DIP (Dependency Inversion Principle) 

Dependency Inversion Principle states that 

1) High level modules should not depend on 
low level modules. Both should depend on 
abstractions 

2) Abstractions should not depend on 
details. Details should depend on abstractions. 

The principle of dependency inversion is at the root 
of many of the benefits claimed for object-oriented 
technology. Its proper application is necessary for the 
creation of reusable frameworks. 

RESM Concept in OOP 

The main problem with the functional programming 
is Reusability, Extensibility, Simplicity and 
Maintainability. To overcome these problems we have 
introduced Reusability, Extensibility, Simplicity and 
Maintainability of the code so that we can develop 
software that is sustained for longer period of time. 

 

Reusability: In functional programming the code of 
a function can't be reused in different parts of the 
program. To over this problem object oriented 
programming uses classes and objects. Rather than 
using functions we can use make use of objects. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 3159-0040 

Vol. 2 Issue 2, February - 2015 

www.jmest.org 

JMESTN42350259 3 

Extensibility: The other major problem with 
functional programming is Extensibility. Whenever we 
declare a class the scope of the functions is limited to 
that class only. To over this issue object oriented uses 
inheritance concept, where it uses parent child 
relationship. 

Simplicity: Object Oriented Programming uses 
polymorphism concept to main the simplicity of the 
code. 

Maintainability: In software Industry, good 
software is which can sustain and maintain for a long 
time. Combining Reusability, Expansibility and 

Simplicity we can build good software that can sustain 
and maintain for a longer period of time. 

Conclusion: 

Finally, We want to conclude that using SOLID 
principles and RESM concept we can build a Software 
which can be sustainable in the present competitive 
business world. 

References: 

[1]Shivprasad Koirala's article on SOLID Principles 
in codeproject.com 

 

http://www.jmest.org/

