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Abstract — In this work an approach to 
determine vehicle parameters such as mass, 
moment of inertia, center of gravity, suspension 
stiffness and damping along with wheel masses is 
proposed. In this regard bicycle car model of the 
vehicle is employed, and an objective function 
(OF) based on acceleration responses of the 
vehicle is formed. To solve the optimization 
problem eight versions of Differential Evolution 
(DE) algorithm as well as genetic algorithm 
toolbox of Matlab (R2014b) is employed. It is 
demonstrated that DE/current to best/1 among the 
considered algorithms is the best in the sense of 
minimum norm of relative errors, and the 
proposed approach achieves to determine 
unknown parameters with acceptable errors. 

Keywords — vehicle parameter identification; 
optimization; differential evolution algorithm 

I. INTRODUCTION 
Vehicle parameters such as mass, moments of 

inertia, suspension and tire properties should be 
accurately determined since they are closely related to 
riding quality, handling, breaking and traction 
performance of the vehicle. Thus, many works have 
been conducted on this issue considering vehicle’s 
longitudinal, lateral and vertical dynamics. For 
example, Venture et al. [1] proposed a method based 
on multibody model of the car to determine dynamic 
parameters of chasis, suspensions, tire vertical 
stiffness and wheel parameters. Furukawa and 
Dissanayake [2] presented a technique for identifying 
parameters of an autonomous vehicle using multi-
objective optimization. Wesemeier and Isermann [3] 
used one track model of the vehicle to determine 
cornering stiffness and center of gravity parameters. 
The proposed method needs the input variables such 
as vehicle forward speed, lateral acceleration, yaw rate 
and slip angle. Khaknejad et al [4] identified mass, yaw 
moment of inertia, the distance between center of 
mass and front axle, and the velocity of a sedan car 
using bicycle model of vehicle and least square 
estimation with exponential forgetting factor. Wilhelm 
et al [5] proposed an OF based on the difference of 
measured and simulated powers. Minimizing this the 
authors determined mass, rolling resistance and 
aerodynamic coefficients as well as efficiency of power 
train of an electric vehicle. Kidambi et al [6] assessed 

the accuracy and performance of four estimation 
methods, i.e. recursive least squares with multiple 
forgetting factors; extended Kalman filtering; a 
dynamic grade observer; and parallel mass and grade 
estimation using a longitudinal accelerometer. Rozyn 
and Zhang [7] used vertical vibration model to predict 
mass, pitch and roll inertia moments. Their method is 
based on modal parameter estimation using the free-
decay responses of the vehicle and estimation of the 
system characteristic matrix. Cui and Kurfess [8] 
determined mass, moments of inertia, suspension and 
tire stiffness, and center of gravity coordinate of a full 
car model with nonlinear/hysteresis shock absorber. 

In this work, motivated by the works such as [7,8], a 
simple and efficient approach is presented to 
determine mass, moments of inertia as well as 
suspension parameters of a vehicle. To this end 
bicycle car model is employed, and an OF based on 
acceleration responses of the vehicle is formed. To 
solve the relevant optimization problem eight DE 
algorithms and genetic algorithm (GA) toolbox of 
Matlab are tested and compared. 

II. THEORY 
A. Vehicle Model 

The vehicle is modeled as shown in Fig. 1., which 
includes the degrees of freedom such as x body 
vertical bounce, θ body pitch, xi (i=1,2) wheel hop. m is 
body mass, I is pitch moment of inertia, ci and ki (i=1,2) 
are suspension damping and stiffness. kti is tire vertical 
stiffness, ai denotes the longitudinal components of 
body center of gravity (CoG). y1 and y2 are 
independent road excitations. 

 
Figure 1. Bicycle car model (RP: Response Point) 

Applying Lagrange’s method equations of motion 
are obtained as follows [9]: 
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This equation set can be solved by numerical 
integration. In this work Newmark beta method is 
applied. 

B. The Proposed Approach 

It is assumed all vehicle parameters except tire 
stiffness are unknown. Tire stiffness is based on tire’s 
mechanical properties and environmental 
characteristics, and is generally determined by 
experiment [9]. In this work tire stiffness are known 
beforehand. On the other hand, according to one of 
the parameter identification approaches some inputs 
are applied to the system and certain outputs are 
recorded. These outputs are then used as reference, 
and the system parameters in the mathematical model 
are adjusted such that the output of the model agrees 
with the reference. This process can be modeled as an 
optimization problem whose OF is based on the 
difference of the reference data and the model output. 
In this work the following OF is employed: 
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where {v} is the vector of unknown parameters, i.e. 

1 2 1 2 1 2 1{ } [         ]Tv m I m m k k c c a=  (4) 

It is simple to record acceleration response of the 
vehicle with current instruments. Hence, two response 
points located along the vertical extensions of front 
and rear axles are marked, which are demonstrated as 
RP in Fig. 1. Then the vertical displacement at a RP, 
i.e. iz , is defined as follows: 
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z x a

θ
θ

= − 
= + 

 (5) 

The superscript r and c in Eq.(3) mean reference 
and computed data, respectively. Overdot indicates 
derivative with respect to time, i.e. 2 2/z d z dt= . As to 
the input, when the vehicle is moving with constant 
speed Vt the tires are subject to step like bump with 
height h and width w (see Fig. 1). By this way all 
vibration modes of the vehicle can be excited. Hence 
the response signals are expected to contain sufficient 
data about the vehicle’s dynamic behavior. Recording 
starts at the instant when the front tire first meets the 
bump, and endures till the rear tire leaves the bump. 
For the vehicle speed and bump geometry the 
following values are considered: Vt=20km/h, w=10cm, 
h=4cm. Higher vehicle speeds are unnecessary, since 
the undamped natural frequencies of the vehicle are in 
the range 0 – 15Hz. The values of w and h may be 
different, as well. Those given above are determined 
after some trials. Response of the system to such 
inputs is obtained solving the Eq. (1). This will be used 
as reference in parameter identification process. In 
practice the recorded data includes some noise 
because of instrumentation and measurement errors. 
To consider noise effect reference data is 
contaminated by random numbers at the rate 5%, and 
the noisy reference data, i.e.  r

iz  in Eq.(3), are plotted 
in Fig. 2. The vehicle parameters considered are [10]: 
m=505.1 kg, m1=28.58 kg, m2=54.3kg, I=651 kgm2, 
a1=1.468 m, a2=1.098 m, k1=k2=15000N/m, 
kt1=kt2=155900 N/m. 

 
Figure 2. Acceleration responses of the vehicle. 

Now the optimization problem to be solved can be 
defined as follows: 

min( { })f v  subject to { } { } { }LB v UB≤ ≤  (6) 

where {LB} and {UB} are the vectors including 
lower and upper boundary values. To solve the Eq.(6) 
generally population based methods are employed to 
avoid local solutions. DE is such a method, as well. 

III. DIFFERENTIAL EVOLUTION ALGORITHMS 
DE is a heuristic global optimization method 

developed by Storn and Price [11].It is easy to use, 
fast convergent, and requires few control variables 
compared to GA [11]. Over time various versions of 
DE have been developed. In this work, the first version 
of DE along with some others known by the author of 
this work are considered. 
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DE starts with creating N candidate points in the 
search space. Then, at kth iteration the ith point, k

ix
(i=1,2,…,N), is subject to mutation. To this end, three 
mutually different random indexes, r1, r2, r3 in the range 
1:N are picked up. These indexes are also different 
from i i.e. 1 2 3r r r i≠ ≠ ≠ . Then mutant vector is 
generated according to 

1 2 3

1 ( )k k k k
i r r rv x F x x+ = + −  (7) 

where F is a real constant called amplification 
factor. It can take values in the range 0:2. Using the 
elements of mutant vector a trial vector, 1k

iu + , is 
generated by crossover. Its jth dimension is defined as 
follows 

1
1   if  ( ) or ( )

  if  ( ) and ( )

k
ij jk

ij k
ij j

v rand CR j rnbr i
u

x rand CR j rnbr i

+
+  ≤ ==  > ≠   (8) 

where randj is the jth evaluation of a uniform 
random generator with outcome in the range 0:1 [11]. 
CR is the crossover constant, rnbr(i) is randomly 
chosen integer in the range 1:D, and D is the 
dimension of the problem. Later, selection is applied. If 

1k
iu +  yields a smaller OF value than k

ix  then 1k
ix +  is set 

to 1k
iu + . Otherwise current k

ix  is set to 1k
ix + . In another 

version of DE the mutant vector is produced as follows 
[11]: 

1 2 3 4

1 ( )k k k k k k
i best r r r rv x F x x x x+ = + + − −  (9) 

where k
bestx  is the point with minimum OF. Also, the 

following strategies are availabe [12]: 

1 2

1 ( )k k k k
i best r rv x F x x+ = + −  (10) 

1 2

1 ( ) ( )k k k k k k
i i best i r rv x F x x F x x+ = + − + −  (11) 

1 2 3 4 5

1 ( ) ( )k k k k k k
i r r r r rv x F x x F x x+ = + − + −  (12) 

In the work of Karaboğa and Ökdem [13] a slightly 
different mutation type is given as 

1 2 3

1 ( ) ( )k k k k k k
i i r i r rv x K x x F x x+ = + − + −  (13) 

where K is the combination factor, F is the scaling 
factor whichk takes a random value between −2 and 2 
at each iteration. Das et al [14] advise 

1 2 3

1 ( )k k k k
i r r rv x R x x+ = + −  (14) 

where R is the scaling factor which takes uniform 
random value between 0.5 and 1 at each iteration. The 
authors claim that population diversity is retained by 
this way as the search progresses. The same authors 
introduced another version in which scaling factor is 
reduced linearly at each iteration as 

max
max min

max

( )
K k

R R R
K

−
= −  (15) 

where Rmax=1.2, Rmin=0.4, Kmax is the maximum 
allowable number of iterations, and k is iteration 
counter. This way helps explore the whole search 
space at the earlier iterations. As the search 
progresses narrower space around the converged 
region is explored. Table 1 summarizes the DE 
versions employed in this work. In the table U(a,b) 
denotes uniform random distribution in the range a:b. 
For DE1 to DE5 the same CR and F values, which are 
consistent with the advice in [11], are employed, since 
the mutant vector generation scheme is similar at each 
of them. For the other DE versions the values 
employed in the relevant works are considered. 

TABLE I.  DE VERSIONS 

Name Relevant Equation Values of 
parameters 

DE1 (7) 

F=0.6, CR=0.9 
DE2 (9) 
DE3 (10) 
DE4 (11) 
DE5 (12) 

DE6 (13) K=0.5, CR=0.8, 
F∈U(-2,2) 

DE7 (14) CR=0.9, 
R∈U(0.5,1) 

DE8 (14), (15) CR=0.9 

IV. APPLICATION 
The same vehicle parameters are employed, and 

the algorithms were run with the following parameters: 
population size (PS) 20, maximum number of iterations 
50. Generally PS between 5D and 10D is suggested 
[11]. But here a lower value is chosen to investigate 
whether the algorithm can achieve to converge to the 
minimum by lower number of function evaluations. 
Lower and upper boundaries of the search space are 
chosen as {LB}=0.5{OV}, {UB}=1.5{OV}, where {OV} is 
the vector containing optimum values (OV). One can 
verify the search space is sufficiently large when 
compared with the relevant works. On the other hand, 
each algorithm was run thirty times to obtain statistical 
results. The mean values and the relative errors (ε) are 
given in Table II. ||ε|| stands for the norm of relative 
errors (NoRE), which is a measure of the closeness of 
the reached point to the optimum. Comparing the 
results in this context it is clear that DE4 is the best, 
since it has minimum NoRE. Most of the parameters 
were identified with errors smaller than 1% by this 
algorithm. That is, the algorithm can find the optimum 
point with negligible error. Besides, it is clear that all 
DE versions are better than GA. To give more chance 
to the algorithms the PS is increased to 30, and the 
results in Table III are obtained. Again DE4 is the best, 
and most of the other DE versions are now closer to 
the optimum. 

V. CONCLUSION 
In this work a simple and efficient method is 

proposed to determine vehicle parameters. To this 
end, vehicle vertical model is considered, and 
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acceleration responses are employed. An OF based 
on the difference of reference and computed 
accelerations is minimized using several DE 
algorithms. It is concluded that DE4, which is known as 

DE/current to best/1, is the best among the others, and 
the proposed approach is efficient to obtain accurate 
values of vehicle parameters. 

 
TABLE II.  OPTIMIZATON RESULTS (PS = 20) 

  m I m1 m2 k1 k2 c1 c2 a1 ||Ɛ|| 
OV 505.10 651.00 28.58 54.30 15e3 15e3 1828.00 1828.00 1.468   

DE1 508.51 655.87 28.73 54.49 15492.59 15981.77 1846.61 1874.05 1.473   

ε (%) 0.67 0.75 0.51 0.36 3.28 6.55 1.02 2.52 0.34 7.91 

DE2 504.27 654.80 28.63 54.37 13894.15 15285.92 1848.22 1830.31 1.468   

ε (%) -0.16 0.58 0.17 0.12 -7.37 1.91 1.11 0.13 0.03 7.72 

DE3 509.32 656.31 28.68 54.46 14698.04 15624.85 1841.36 1870.48 1.473   

ε (%) 0.84 0.82 0.36 0.29 -2.01 4.17 0.73 2.32 0.39 5.39 

DE4 506.68 653.84 28.64 54.46 15016.74 14894.38 1834.80 1847.71 1.471   

ε (%) 0.31 0.44 0.21 0.30 0.11 -0.70 0.37 1.08 0.20 1.51 
DE5 518.94 667.16 28.52 54.61 14715.99 15434.35 1840.49 1956.73 1.482   

ε (%) 2.74 2.48 -0.22 0.57 -1.89 2.89 0.68 7.04 0.98 8.78 

DE6 515.70 660.64 28.69 54.22 14770.55 14787.06 1866.67 1879.41 1.475   

ε (%) 2.10 1.48 0.39 -0.15 -1.53 -1.42 2.12 2.81 0.51 4.88 

DE7 515.49 664.77 28.81 54.89 14903.22 15813.86 1870.68 1933.85 1.483   

ε (%) 2.06 2.12 0.80 1.10 -0.65 5.43 2.34 5.79 0.99 8.96 

DE8 519.69 664.39 28.69 55.07 14395.64 15507.00 1867.92 1957.32 1.482   

ε (%) 2.89 2.06 0.37 1.42 -4.03 3.38 2.18 7.07 0.94 9.90 

GA 554.54 702.02 29.04 55.41 15338.49 15636.14 1991.57 2000.46 1.509   

ε (%) 9.78 7.84 1.60 2.05 2.26 4.24 8.95 9.44 2.81 19.10 

TABLE III.  OPTIMIZATON RESULTS (PS = 30) 

 m I m1 m2 k1 k2 c1 c2 a1 ||Ɛ|| 
OV 505.10 651.00 28.58 54.30 15e3 15e3 1828.00 1828.00 1.468  
DE1 508.39 654.82 28.71 54.33 15125.45 14973.91 1841.65 1863.43 1.471  
ε (%) 0.65 0.59 0.46 0.05 0.84 -0.17 0.75 1.94 0.200 2.46 
DE2 507.78 653.72 28.71 54.61 14890.57 14341.34 1840.15 1854.23 1.471  
ε (%) 53 42 0.46 0.57 -73 -4.39 0.66 1.43 0.230 4.83 
DE3 508.63 655.78 28.67 54.51 15088.73 15078.72 1836.85 1874.58 1.474  
ε (%) 0.7 0.73 0.32 0.39 0.59 0.52 0.48 2.55 0.410 2.97 
DE4 505.75 652.58 28.64 54.38 14706.80 14949.88 1830.61 1839.05 1.470  
ε (%) 0.13 0.24 0.23 0.15 -1.96 -0.33 0.14 0.61 0.130 2.12 
DE5 525.28 657.83 28.41 54.97 14333.51 12771.78 1826.53 1891.05 1.477  
ε (%) 4 1.05 -0.6 1.24 -4.44 -14.85 -0.08 3.45 0.580 16.48 
DE6 512.13 657.64 28.70 54.57 14704.53 14863.99 1854.47 1875.84 1.473  
ε (%) 1.39 1.02 0.43 0.5 -1.97 -0.91 1.45 2.62 0.340 4.14 
DE7 508.34 654.11 28.70 54.89 13809.60 14463.92 1817.99 1921.59 1.479  
ε (%) 0.64 0.48 0.42 1.08 -7.94 -3.57 -0.55 5.12 0.770 10.24 
DE8 512.26 659.86 28.65 54.53 14777.78 15579.17 1835.51 1903.17 1.483  
ε (%) 1.42 1.36 0.26 0.42 -1.48 3.86 0.41 4.11 1.120 6.27 
GA 562.34 682.64 28.84 55.06 14517.00 14283.09 1901.54 2063.85 1.518  

ε (%) 11.33 4.86 0.90 1.39 -3.22 -4.78 4.02 12.90 3.410 19.55 
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