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Abstract-- The study of fluid dynamics has 
applications in many areas of engineering 
and science. This includes the understanding 
environmental, biological and chemical 
flows. Laboratory experiments and 
computer simulations are the two main 
approaches for the study of complex flow 
problems. Computer simulations can help 
one to understand and analyse the 
complexity involved in these flows more 
clearly without having to perform time 
consuming, expensive and complicated 
experiments. Advancements in modern 
computers have facilitated the solution and 
analysis of fluid flows with high accuracy 
(close-to-reality) and reduced computational 
time. In computational fluid dynamics, one 
has to employ basic physical principles to 
develop mathematical models and therefore 
obtain accurate numerical solutions. 
Development and improvements of 
numerical schemes have encouraged 
researchers to investigate almost too every 
branch of fluid dynamics and its 
applications to real life problem. But 
multiphase flows occur in many industrial 
and natural phenomena such as petroleum 
refining, biological flows and interaction 
with air with sea surface. The simulation of 
multiphase fluid flows is one of the most 
challenging problems in CFD as it involves 
the modelling of sharp interfaces separating 
multiple fluids.    
 
 

P K Singh 
Department of Mathematics, University of 

Allahabad, Uttar Pradesh, Pin -211002, 
India E -Mail: 

pramod_ksingh@rediffmail.com 
 

I. INTRODUCTION 

The physical behaviour of two-phase flows 
can be predicted by computer modelling [1]. 
Recent advances in computational methods 
for multiphase flow involving gas, solid and 
liquid phases [2-3]. The mathematical 
interpretations of the mass and momentum 
conservation principles [4]. The governing 
equations are presented by a set of PDEs 
[5].  

The continuity equation at a point in a 
compressible fluid such as  
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌) + ∇ . (𝜌𝜌𝜌𝜌) = 0                              (1)     
Where t, 𝜌𝜌, V and ∇  denotes  time, density, 
velocity vector and nabla operator. The 
transportation of fluid is described by the 
momentum equation as  

 � 𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜌𝜌𝜌𝜌) + ∇. (𝜌𝜌𝜌𝜌𝜌𝜌)� = −∇p +  γ∇  2𝜌𝜌 
  + 𝑆𝑆𝑣𝑣                                                        (2)    
Equations (1)-(2) are Navier Stokes 
equation [6], which are difficult to solve 
analytically and numerical solutions are 
applied for simulation. Furthermore, in the 
simulation the properties of the fluid change 
abruptly across the interface whose location 
must be known at every time-step. This 
position is determined by interface 
advection methods and fluid motion is 
predicted applying N-S solvers [7-8]. The 
main two approaches to the solution of the 
multiphase fluid flows- air and water flow 
which involves large viscosity and density 
ratios. On the other hand, in the first 
approach only the liquid phase (to be 
inviscid) is modelled. But N-S equations can 
be converted into Laplace’s equation [9].  In 
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the second approach viscous effects have 
been considered [1] 
And the both the liquid and gas are 
modelled with the full N-S equations.  
We mainly focussed on the second approach 
for multiphase flow the flow of two-
immiscible fluids (multifluid flow). 

2. Numerical Methods The numerical solution 
calls for the discretization of the 
computational domain using a grid 
arrangement to store variables for the fluid 
properties. Therefore, the PDEs are 
discretized according to the chosen grid 
resulting in a linear system of equations 
which is then solved to obtain the numerical 
solution.     
2.1 Method for multiphase flows- Modelling 
the advection of the sharp interface 
numerically is a challenging task [10] and 
range of methods [11] have been developed 
over the last 30 years to achieve this. We 
studied two phase flows applied to 
immiscible fluids can be classified into two 
categories − interface tracking and interface 
capturing   [7][12-13]. 
2.1.1 The interface tracking method- the 
interface between two fluids is explicitly 
tracked during the fluid motion to maintain a 
sharp discontinuity in the fluid viscosity and 
density. The motion of the interface is tracked 
either by marker points located on the surface 
or by attaching it to a mesh boundary surface.  
The second is the front tracking method, a 
separate front, on a fixed grid is used to 
identify the interface for each phase with the 
help of additional computational elements 
introduced explicitly. These elements are 
marker particles  on the surface and form a 
moving internal boundary. Both phases are 
treated are one fluid with variable materials 
properties and one set of the N-S equations is 
solved over the whole computational domain. 
Furthermore, fluid properties, density and 
viscosity are calculated with respect to the 
interface position. On the other hand, this 
method uses piecewise linear, higher order 
polynomial to fit the interface which is 
advected with the flow fields in a Lagragian 
manner [14-15]. Henceforth another interface 
tracking method is the moving mesh method 
[16-17] wherein a boundary fitted grid is 

employed and the grid points are embedded in 
the fluid and these points are moved in a 
Lagragian manner.  The same fluid elements 
are kept in all computational cells which are 
adjacent to the interface and the fluid always 
coincides with the specified regions 
facilitating the piecewise tracking of the fluid 
surface [18]. The interface is integrated with 
these points and is tracked by the nodes 
affixed on both phases. The movement of the 
interface is determined utilizing the 
knowledge of velocities known at the current 
time-step [19]. 

Moreover, N-S equations are solved for both 
fluids (liquid and gas). For the liquid phase, 
these equations are solved on a deforming 
unstructured mesh [17] and one of the 
advantages of this method is that it permits 
the accurate prescription of the boundary 
conditions of the interface [20]. 

2.1.2 The interface capturing method -  The 
volume fraction function which as the colour 
function is a step function and represents the 
fraction of volume occupied by one fluid. The 
interface is reconstructed from the value of 
the colour function [21-22]. The volume 
fraction method solves a scalar transport 
equation Eq.(3) in an Eulerian manner  

 
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝐶𝐶) + 𝜌𝜌.∇C = 0                                  (3)       
 
where C being the colour function is a step-

function and represents the fraction volume 
occupied by one fluid shown in  

 
Fig. 1 Interface capturing methods 

which shows that the value of the colour 
function C is only in the fluid 2 and zero in 
the fluid 1 unity while it lies between zero 
and unity at the interface. The mesh is kept 
fixed and a suitable technique is chosen to 
locate the interface in the interface capturing 
methods [14][23]. Since the interface is 
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reconstructed at each time-step from the 
known value of the indicator function and 
also this method is able to cope with large 
stretching and deformation of the interface. 
On the other hand, this methods can be used 
for modelling large scale deformations of the 
interface including breakup and merging [7]. 
The volume fraction method which uses the 
colour functions to identify the interface. The 
volume of fluid methods has been widely 
used for the numerical simulation of viscous 
flows having non-zero viscosity with moving 
interface.  
 

II. KRYLOV-SUBSPACE METHOD 
(K-S)  

Krylov−Subspace method [24-25] are some 
of the most efficient iterative methods  
applied to a large sparse linear system of 
equations obtained from PDEs representing 
multiphase flow problems [15]. A residual 
vector γ = B − Ax is calculated initially and is 
minimized or is set to satisfy some other 
constraints in each iteration.   The residual 
vector on the multiplication by powers of the 
matrix A in successive iteration, generates a 
subspace  which is Krylov Subspace (K-S) 
[26-27], as m denotes dimension of the 
subspace. This method belong to non 
stationary category [28] as shown in Fig.2 

 
Fig. 2 Nonstationary iterative methods 

have been widely adopted as a good choice 
for solving  large sparse linear systems of 
equations [29-30]  

III. MODEL VALIDATIONS AND 
OTHER NUMERICAL SCHEME 

The whole model for multiphase flow 
problems consists of two parts are shown in  
Fig.3 

 
Fig.3 Different steps of the multiphase fluid flow simulation 

and these parts are PDEs solvers which 
includes linear system solvers and multifluid 
methods [31-32]. Furthermore, in case of 
computer simulation both two parts are 
integrated together and executed within a 
time iteration [33].  
In order to validate this integrated model 

many benchmark problems [34-35].   
4.1 Parallel Numerical Algorithm – 
Computer simulation of multiphase flow 
problems involve the implementation of 
complex algorithms which are as intensive in 
both time and memory requirements [36-37].  
Executing the Algorithm may take days when 
run on a single processor. Moreover, in the 
this studies  simulation of some problems − 
dam breaking , the rising of a air bubble, and 
the fine grid resolution 512×512   takes 6-7 
days when executed in a single processor with 
clock speed 2.8GHz and 8 GBRAM. 
Henceforth, for higher resolution simulation 
of CFD problems the matrix size may become 
too big to fit in the memory and thus, it is 
difficult to solve the linear system on the 
available computer [38-39]. 
To deal with memory constraint and to reduce 
computational time, these complex algorithm 
need to be implemented on parallel computers 
consisting the clusters of processors [40-41]. 
An idea of the importance of the parallel 
computers can be found from the top 500 site 
(www.top500.org) the five hundred fastest 
machines in the world on their performance 
on the various benchmarks problems. In this 
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approach one can avail of the huge memory 
and computational power of many processors.  
On the other hand, the parallel 
implementation of CFD code has been carried 
out for the simulation [42]. The development 
of parallel algorithms has been focus of 
intense research in the area of parallel matrix 
computation [40][43-44]. The quality of 
parallel algorithms can be measured by using 
common performance evaluators, speed up Sn 
and Efficiency En  [45-46]  
𝑇𝑇𝑠𝑠
𝑇𝑇𝑝𝑝

=  𝑆𝑆𝑛𝑛   ;     𝑆𝑆𝑛𝑛
𝑛𝑛

=    𝐸𝐸𝑛𝑛                            (4)  

Where  Tp and Ts  denotes time taken by 
parallel algorithm on n processors and Ts 
denotes the time taken by its serial version.  
In the present work, the simulation has been 
carried out on a Linux cluster which has 56 
nodes, each having 2 quad core processors 
with clock speed 2.8GHz and 8 GBRAM. In 
the programs related to parallel matrix 
computation, processor is required to send the 
executed data to each other within a network 
[48]. Now, these data are sent in the form of 
message by using certain parallel 
communication libraries Message Passing 
Interface [31] [49-51]. Now for parallel 
computation of the linear solvers one 
processor is required to manage the processor 
communication such as gathering the parts of 
matrix-vector products calculated by other 
processor and therefore [43] and these 
processor act the master processor and 
therefore the master slave paradigm [42][51] 
has been adopted in the research studies to 
design the parallel algorithms for the different 
steps of the linear solvers 
.  

DISCUSSION AND FURTHER 
RESEARCH 

The following conclusions can be drawn from 
the above studies:  

[i] computer simulation of multiphase 
flow requires the numerical solution 
of PDEs. The numerical solution is 
used to move the interface between 
two-phases of fluids in the multifluid 
model.      

[ii] the interface capturing method is 
more suitable for large deformation 
and stretching on the interface.  

[iii] the VOF (PLIC) method maintains 
the sharpness of the interface.  

[iv] an analytic relation between the 
interface position and the volume 
fraction facilitates extension to 3D 
problems.  

[v] PDEs are solved numerically in a 
computational domain which is 
divided into parts using suitable grid 
schemes. Now, the under mentioned 
points and observations are noted for 
steps from domain discretization to 
linear system of equations:  

[a] the FVM enforces conservation the 
momentum and mass in each CV as 
well as in the whole domain. 

[b] the staggered grid is more suitable to 
deal with  the problem involving 
velocity−pressure coupling.  

[c] the non-linearity of velocity terms 
can be dealt with by the SIMPLE 
method.  

[d] a special data structure is required  to 
store sparse matrices.  

[e] the non-stationary K-S solver Bi-
CGSTAB provides smooth 
convergence.  

[f] effective preconditioners for K-S 
solvers are DS, ILUT and SSOR.  

[g] large scale problems are solved on 
the parallel computer.  

[h] parallel algorithms are needed to 
develop to carry out the simulation 
on these computers.  
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