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We study the field of dynamic stresses and
displacements arising near the cylindrical
layer (liquid) in a viscoelastic medium during
the passage of a plane wave. It is shown that
the inclusion of the viscous properties of the
material environment in the calculation of
the action of harmonic waves, reduces stress
and displacement on 10-16%.
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Introduction. Impact of longitudinal and
transverse waves on a cylindrical body was
investigated by many authors [1, 2, 3, 4].
While considered axially symmetric (and not
axially symmetric) tasks used different
models for fluid and layers (or shells).
Previous works cylindrical body considered as
a cylindrical shell and the equation of motion
is obtained based on the hypothesis Kirchhoff
- Love [5, 6, 7, 8 ]. Also environment has been
viewed as an elastic, t. e. Relationship of
stress and strain state obeys Hooke's law
[9,10]. This work differs from previous ones
in that the cylindrical shell ambient
possessing viscous properties, i.e. stress and
strain due obeys Boltzmann integral relation -
Voltaire [12]. Impact model-tins of
longitudinal and transverse waves on
cylindrical layers and liquid based on the
techniques developed in the dynamics of
bodies interacting with a deformable
medium, for example, in [11].

Statement of the problem. An infinitely long,
homogeneous, isotropic-deformable cylinder
with an ideal compressible liquid in an
infinite viscoelastic medium, falls harmonic
plane wave expansion (or shift) (Fig. 1). The
wave front is parallel to the cylinder axis.
Thus, the problem of plane strain. Here
r=R and outer r =R, -inner radii of the

cylindrical layer. The main aim of the work is
to determine the stress - strain state of
cylindrical layer and the environment under
the influence of the longitudinal (or
transverse) harmonic waves. Under the
assumption of generalized plane strain state
of the equation of motion in terms of
displacements is given by [1]

~ I rof 526]
(4; +2u;)grad divu; — protrotu; +b; = p, preat
(1)

where 4, and y; (j=12, j=1-relate to
the environment, j=2- to layer) operator
modules of elasticity

’y f(t)zﬂo{f(t)— j-Rfli)(t—r)f(r)dr}

—o0

7, f () =uo,-[f(t)— [RO(—2)f (r)dr}

b; —vector density of volume forces (b;=0);
f (t) — some function; p; — density materials
Rf,i)(t—r) m RY(t-7)- core relaxation
Agjs loj - instantaneous elastic module of
I

Uslugouy) -
displacement vector. Which depends on the
r,0,t. At pressures up to 100 M Pa in the
fluid motion is described satisfactorily by the

wave velocity potential for the fluid particles
[11].
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where C, — acoustic velocity of sound in the
fluid. Potential ¢, and the velocity vector of

the fluid are related by V = gradeg,. Fluid

pressure I =R, determined using the linear

0
zed Cauchy — Lagrange P=—p0CO% -
Pressure of the fluid on the wall of the
cylindrical shell and p, -density of the liquid.

Provided unsupported flow fluid normal

o=pe
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component of velocity and the layer on the
surface of their contact r = Ry must be equal

o0p,

0¢, _du,,
or

" at ) (3)

r=R,

r=R,

Where u,, — layer of normal movement. At
the contact of two bodies r = R, the equality
of stresses and displacements (rigid contact
condition)

Uy =Uas Opg = Opp Uy =Upy;

(4)

Or91 = Oyrp2
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Fig. 1. Calculation scheme pipe with liquid

Note that in the case of the sliding contact
surface of the soil pipe by the last equation in
(2) becomes [2]: o, =0

Let the incident plane wave propagates in the

positive direction of the X-axis:
pP) =g e@V )0 under the
influence of longitudinal waves

(orypP) =y e ) = (- when exposed
to shear waves); ¢, and - he amplitude

of the incident waves; @ - circular frequency

of the incident waves. Expression (p(p)( or

W(p))

coordinates, cylindrical layer r,0 Through a

can be represented in polar

series of

PP = (z)Ai E,i"J, (a,r)cosnée ™

WWW.jmest.org

JMESTN42350100

n=1
1, n=0 o
where E = , J,- cylindrical
2, nx1
Bessel function.
274


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

Methods of solution.

The problem is solved in terms of potentials
movements for representatives of Whim-
displacement vector in the form:

[ [ .
u;=grad ¢; +roty;, (j=12)

t t
(/Ioj +2,u0j)V2¢)j — Ay J-Rg‘)(t—r)vzgojdr—Z,uoj J.RLJ)(t—r)Vzgojdr =p;
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Where @; - The potential of longitudinal

waves; l/I/J- (v, ¥ 4) - The vector potential

of the transverse waves.

Basic equations of the theory of visco elastic
(1) for this problem on a plane deformation
can be reduced to the following equation

62(/)j
ot?

r
o’y

r . r -
:uojvzlr//j Y J.RLJ)(t—T)VZV/de =Pj — (9)

o? 10 1 o?
=—t+t——+t—F+—>
or ror r o0
operators in

where V2

differential

coordinates and V- Poisson's ratio [12].

cylindrical

At infinity r - oo potentials of longitudinal
and transverse waves in j =1 were satisfied

with the Somerfield radiation condition [1]:

@, (r,0,t) => ql (r,0)e "*;
k=1

Where q,ﬁf”(r,@) Z qﬁ}”)(r,e) — complex

function, which is to solve the following
equations (7)

viq(r0)+ajay =0, viay(r,6)+ ialy =0,
Vi (r.0)+agais) =0, j=12 (8)

2

2 _ pa)
where  a; _/101_ (1_Z)j)+ 24, (1_/701)’

2
w

ﬂZ _ pa)z aZ _
— —, 0=
: /uoj (1_ﬂoj) C02

ot?

lime, = 1im(/”

r—ow

(6)

op, .
+lo =0,
or 1¢j

Iiml//lzoy

|im(\/r_)”[%+ iﬂlyfl) =0.
r—oo r

Equation (3) can be found in the form:

l//j (r,6’,t) :qug//) (r’e)efi(ut’ (7)
k=1

/Toj =ay (0))+isz (0))' Hoj = a/w(a))"'ibyj (‘0)

R, (r)sinwrdr,

R, (r)coswrdr.

The solution of equation (3) with (8) is
expressed in terms of the Henkel function of
the 1st and 2nd kind n-the order:
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0= 3 [AHO (@) + AHO (ar)cosne ™

n=0

V= i[Bn H®(Br)+BH® (ﬁlr)]sin nee ™
n=0

P2 = i[Canm (a,1)+ D,H®(a,r)|cosnge ™
n=0

(9)

Vo= i[M JHE(Br)+ L HE (,Bzr)]sin nge ™
n=0
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P = i[Kan (o )+ KN, (et )Jcosnée ™

n=0

L

n'=n 7

Where A,,A,B, B/ ,C D M,, K.u
K- The expansion coefficients, which are

determined by the appropriate boundary

conditions; H n(l) (a;r)and  H n(z) (a;r)-
Respectively the Henkel function of the 1st
and 2nd kind n-the order

H rEl)’(z)(ozr) =1J, (ar)i iNn(ar)

Solution (9) at j = 1 satisfies at infinity r > oo
the Summerfield radiation condition (6) and
is

represented as:

2" =2 APHP (e r)as (mO)e iy, =3 CPH, P (Br)sin (no)e .

Solving (2) satisfies the
constraint condition at power factors [1], and

it follows that K| =0

the problem

9, =Y K,J,(ar)cosnge™

n=0
Full potential can be determined by applying
a potential incident and reflected waves.
Thus, the bias potential will be

¢ = o + (01(1)
b =0, Y=y, Yy=v, ¢ =0 (10)
It follows that the stresses and displacements

can be easily expressed in terms of bias
potential [2],

J _8¢j+181//j_ y _lagﬁj_@(//j (11)
i ’ g — ]
or r 06 r o0 or
- o’¢; o (19y;
=AVZ3p. + 211, Iy =270
@i ?i ’“‘[ar2 8r[r 06
- _ |1 0¢; 1 0%, 1 .10y, oy
=AV?p. + 21| = L= iy = (= i iy .
@ oa ? ”’[r(ar r 502 v " o0 " areo’
— 1 0%, 1 09 1 %y, o (1oy,
Org = 2 | +| == L —r—| =—
r 06or r< o6 r< o6 or\r or
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Displacement and stress for the case of the obtain the following expression for the
layer on the compression wave i obtained. displacements and stresses:
After substituting (10) into (11) with (9), we

u, = r’li[gpoEni”Eéll)(aer AES) (a,r)+B,ED(B,r)|cosnée™
n=0
=0 Z[(POE i E61 a,r +AnE61 (al )+B E62 ﬂl ]cosnéba"wt

s =3 [C ED )+ D, ED () + ML ES (5, + L EW oosnae ™

n=0

U =13 [C.ED a0+ D,EL (er,r)+ M, EL (B,r) + L EY (A1 )Jsinne ™
n=0
G = 2y M- M )2 Y [0oEi"ED(ayr) + A ED (o) + BES (1 )cosnée ™
n=0

Ogo = 2#01(1_ M kl)r_22[¢0EninE§11)(a1r)+ AnES)(alr)—'_ B, Eg)(ﬁﬁ)]cosnae—im (12)

n=0

Oron = 2:“01(1_ M kl)rizz[(ﬂoEnin Ez(tll)(alr)"‘ A, Eﬁ)(alr)"' B, Efé)(ﬂlr)]sin nee ™
n-0

o r2 = 2/“[02(1_ M kZ)r_zi[Cn El(f)(aZr)+ Dn El(f)(azr)+ M nE:L(S)(IBZr)+ Ln El(f)(ﬂzr)]cosnée_ivvt

n=0

0_992 = 2#02 (l_ M k2)r_22[CnEg)(a2r)+ Dn Eg)(aZr)_i_ M n Eg)( 2r)+ LnEg)(IBZr)]COS néb_iW[

n=0

Orpp = 2:“02(1_ M kz)rizz[CnES)(azr)"‘ D, Eéi)(azr)+ M nES)(ﬂZr)_'_ L, Eég)(ﬂzr)]sm nee ™"

where 22 - n[ﬂrY ( ) (n +1)Y ( )]
EY - (nz -2 JYn(k)(ar)—arYn(kl)(ar) e (azrz g an<k>(ar)
EY = nl(n+1)v,“(6r)+ prv) (pr)] EY = n|(n+2)v,(ar)-ary, ) (ar)|

() _ Br’ ®) (0 2p2
EX ——(n2+n+ > _a2r2jy (ar )+ arY X (ar )Eg):—(n“rn—ﬁzr JYn(k)(ﬁr)_i_ﬁrHr(]kl(ﬂr)
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B = larY, ¥ (ar)- v, ar )
Eg =-nY,“ (pr)
Egy) = -nY,"(ar)

EY = [y S (ar)- prv ()] k=1234

roe
Y(l)zJ, Y(Z):N, Y(S)ZH(l), vy _H@

Undetermined coefficients

AISJ')’B(J‘),C(J‘)1D(J‘)

determined from the

Hél)v(z)(zj —+ g

r—0 T

S

T
End r >
5 \V/2
H’(nl)-(Z)(z): < eii(kz—ﬂ'/4)’
iz
U u
* . * a . *
Ug =——"—; Uy =- ; Owj =
lap, 1ap,

The results of calculations and conclusions

Data falling oxen stresses and displacements
are defined in rows, being described by the
expressions (9) - (12) in the case of hard
contact. Calculations were performed by
Nene computer program complex «Mat lab»,
series calculated with an accuracy up to 107
All the

displacements are of the form:

expressions for stresses and

(R+ilm)e™ =(R? + Im? g ()

As you can see the solution of the problem is
expressed in terms of special functions of
Bessel and Henkel functions of the 1st and
2nd kind. With the increasing number of their
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system of linear algebraic equations of the
seventh order

[CHa}=[F]

where {g}-column vector containing arbitrary

(13)

constants; {F}-column vector of external
loads; [C]-square matrix elements-which are
expressed through the Bessel and Henkel.
Equation (13) can be solved by Gaussian
elimination with the release of the main

element.

when r > 0:

(éjz(l—gln zj + O(z4 In z),

) fo-apemz® o)

Henkel asymptotic formula used 1st and 2nd
kind [14]. In this paper, displacement and
stress is reduced in dimensionless forms

* Org .

. — 2
v Org = ;O =—Hf"Qu
Oy

argument (9) - (11) converges. Therefore, on
the basis of numerical experiments showed
that the accuracy of 5-6 members of the
ranks of the accuracy achieved 10° — 10%. As
relaxation kernel take a three-parameter

, , Ae , ,
viscoelastic core R(t)= Rizhanitsena-

tlfO{

Koltunova [3], has a weak singularity, where
A a, - materials parameters [3]. We use

the following
A=0,048;, p=005 «a=0]1;

parameters:

c, =1493 %,

po =1000 = ;
C M
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12; o, = 786-10" K_z; Ma.ximum voItage.in 2?1 layer of liquid on the
M M action of longitudinal and transverse
harmonic waves is the radial stress. They
change along with the &-vedena in Table 1

and 2 (with or without a liquid medium).

E, =195-10"
H
E, =21-10° —;

p,=20-10° —; R, =002R

Table 1. Radial stress in the layer at impact with the impact of longitudinal waves

0 0° 45° 90° 135° 180°
o 0,672 0,423 0,711 0,518 1,65
Empty layer
o, 0,778 0,435 0,721 0,547 1,886
layer liquor

Table 2. Radial stress in a layer of liquid at the impact of transverse waves

angle: 0 0° 45° 90° 135° 180°
o 0,431 0,712 0,521 0,801 0,847
Empty layer
o, 0,483 0,914 0,637 0,825 0,886
layer liquor
In the long-wavelength (%>1) stress %(l ) in some frequency values they differ
distribution layer and the liquid without up to 40%. Accounting for the viscous
liquid differs to 14%, and in the short-wave ( properties of the material at ambient based
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on longitudinal and transverse effects of
harmonic waves and reduces the stresses
and displacements at 10-16%. The maximum
radial stress when exposed to longitudinal
waves is achieved 0 = 90° and 270°; It should
be noted that the maximum radial stress at
the impact of the transverse waves is
achieved 0 = 45%nd 1350; as well as the
distribution of stress at ;R;= 0,099 almost
the same as in the static case (A =) while at
higher wave (f,R, =15) numbers of the
stress distribution is significantly different
from the static. The ratio of the densities
N=p1/p2 has a great influence on the voltage
and the bias layer. With the increasing
density of the layer maximum voltage and
bias layer increases. Thus, methods and
algorithms for solving tasks, allow us to find
the stress-strain state of cylindrical bodies
under the influence of harmonic waves.

References

1. AN Guz, Kubenko V.D, M.A. Cherevenko
Diffraction of elastic waves. "Science", 1978.
308 p.

2. Pao Y.H., Mow C.C. diffraction of elastic
waves and dynamic stress concentration.
Number 4, Grane, Russak, 1973 694 p.

3. KOLTUNOV M.A. Creep and relaxation. -
Moscow: Higher School, 1976. — 276p.

4. Datta S.K. Tensional waves in an infinite
elastic solid containing a penny - shaped
crack.-z. answer. Math. And Phys., 1970, 21,
Ne 3, p.343-351

5. Mubarak Y.N., Safarov I.I. On the action of
elastic waves on a cylindrical shell. Publisher

ISSN: 3159-0040

Vol. 1 Issue 4, November - 2014
Tashkent series of Technical Sciences, 1987.
Ne 4. p. 34-40

6. Safarov I.I. Evaluation of underground
structures seysmonapryazhennogo
methodology wave dynamics Collection
"seism dynamics jobs and facilities" Tashkent,

Science. 1988.

7. Filippov I.G. , O.A. Egorychev Unsteady
oscillations and waves in the diffraction of
acoustic and elastic media. . - M.
Mechanical, 1977.-304 with.

8. Safarov LI. The interaction of waves in
multilayer cylindrical layers repositories
boundless elastic medium. Proceedings VII
vssoyuz. Conference 'Dynamics, the basic
foundations and underground structures
"Dnepropetrovsk, 1989. p. 56-57

9. Safarov I.I., Dzhumaev Z.F. On blowup
tunnel with strong movements of the earth.
International conference on earthquake
engineering. Publisher Sank - Peturburg,
2000, p. 71-78

10. Avliyakulov N.N., Safarov I|.I. Modern
problems of statics and dynamics of
underground pipelines. Tashkent. 2007. 306

p.

11. Bozorov M.B., Safarov l.I.,, Shokin Y.l
Numerical simulation of oscillations of
homogeneous and inhomogeneous
dissipative  mechanical  systems. The
Novosibirsk: Publishing House. SB RAS.

1996.189 with.

WWW.jmest.org

JMESTN42350100

280


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

12. Rashidov T.R., Safarov l.l. and others
about the two basic methods of studying the
seismic stress state of underground
structures under the action of seismic waves.
Tashkent: DAN. Number 6, 1989. Pp. 13-17.

13. Safarov I.I. Avliyakulov N.N. Methods to
improve seismic resistance of underground
plastic pipe / / Uzbek Oil and Gas Journal,
2005, Ne 44-4.5.42.

14. Grace E., Matthews G.B. Bessellya
functions and their application to physics and
mechanics ke.- Publisher Moscow, 1953 - 371

p.

WWW.jmest.org

JMESTN42350100

ISSN: 3159-0040
Vol. 1 Issue 4, November - 2014

281


http://www.jmest.org/

