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We study the field of dynamic stresses and 
displacements arising near the cylindrical 
layer (liquid) in a viscoelastic medium during 
the passage of a plane wave. It is shown that 
the inclusion of the viscous properties of the 
material environment in the calculation of 
the action of harmonic waves, reduces stress 
and displacement on 10-16%. 
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Introduction. Impact of longitudinal and 
transverse waves on a cylindrical body was 
investigated by many authors [1, 2, 3, 4]. 
While considered axially symmetric (and not 
axially symmetric) tasks used different 
models for fluid and layers (or shells). 
Previous works cylindrical body considered as 
a cylindrical shell and the equation of motion 
is obtained based on the hypothesis Kirchhoff 
- Love [5, 6, 7, 8 ]. Also environment has been 
viewed as an elastic, t. e. Relationship of 
stress and strain state obeys Hooke's law 
[9,10]. This work differs from previous ones 
in that the cylindrical shell ambient 
possessing viscous properties, i.e. stress and 
strain due obeys Boltzmann integral relation - 
Voltaire [12]. Impact model-tins of 
longitudinal and transverse waves on 
cylindrical layers and liquid based on the 
techniques developed in the dynamics of 
bodies interacting with a deformable 
medium, for example, in [11]. 

Statement of the problem. An infinitely long, 
homogeneous, isotropic-deformable cylinder 
with an ideal compressible liquid in an 
infinite viscoelastic medium, falls harmonic 
plane wave expansion (or shift) (Fig. 1). The 
wave front is parallel to the cylinder axis. 
Thus, the problem of plane strain. Here 

Rr =  and outer  0Rr =  -inner radii of the 
cylindrical layer. The main aim of the work is 
to determine the stress - strain state of 
cylindrical layer and the environment under 
the influence of the longitudinal (or 
transverse) harmonic waves. Under the 
assumption of generalized plane strain state 
of the equation of motion in terms of 
displacements is given by [1] 
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where   jλ  and jµ  ( 2,1=j , 1=j - relate to 
the environment, 2=j - to layer) operator 
modules of elasticity  
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 – vector density of volume forces )0( =jb ; 

)(tf  – some function; jr  – density materials 

)()( tµ −tR i  и )()( tλ −tR i - core relaxation 

ojoj µλ , - instantaneous elastic module of 
viscoelastic material ( )jrjj uuu θ,r

 -
displacement vector. Which depends on the 

tr ,,θ . At pressures up to 100 M Pa in the 
fluid motion is described satisfactorily by the 
wave velocity potential for the fluid particles 
[11].  
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where Со  – acoustic velocity of sound in the 
fluid. Potential 0ϕ  and the velocity vector of 

the fluid are related by 0ϕgradV =
r

.  Fluid 
pressure 0Rr =  determined using the linear 

zed Cauchy – Lagrange 
t
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Pressure of the fluid on the wall of the 
cylindrical shell and ρо -density of the liquid. 
Provided unsupported flow fluid normal 

component of velocity and the layer on the 
surface of their contact  r = R0 must be equal 
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Where 2ru  – layer of normal movement. At 
the contact of two bodies r = R, the equality 
of stresses and displacements (rigid contact 
condition) 

;21 rr uu =   21 rrrr σσ =   ;21 θθ uu =  

21 θθ σσ rr =      .                   (4) 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Calculation scheme pipe with liquid 

Note that in the case of the sliding contact 
surface of the soil pipe by the last equation in 
(2) becomes [2]:  01 =θσ r  

Let the incident plane wave propagates in the 
positive direction of the x-axis: 
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(or ( ) ( ) ,1
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p e ωβψψ −=  ( ) 01 =pϕ - when exposed 

to shear waves); Аϕ  and  Аψ - he amplitude 
of the incident waves; ω - circular frequency 

of the incident waves. Expression ( )pϕ ( or 
( )pψ ) can be represented in polar 

coordinates, cylindrical layer θ,r  Through a 
series of  
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Methods of solution.  

The problem is solved in terms of potentials 
movements for representatives of Whim-
displacement vector in the form:  

)2,1(, =+= jrotgradu jjj ψϕ
rr

 

Where jϕ  - The potential of longitudinal 

waves; ),( jrjj θψψψr - The vector potential 

of the transverse waves.  

Basic equations of the theory of visco elastic 
(1) for this problem on a plane deformation 
can be reduced to the following equation 
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differential operators in cylindrical 
coordinates and jv - Poisson's ratio [12]. 

At infinity r → ∞ potentials of longitudinal 
and transverse waves in 1=j  were satisfied 
with the Somerfield radiation condition [1]: 
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Equation (3) can be found in the form: 
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Where ),()( θϕ rqkj  и ),()( θψ rqkj  – complex 

function, which is to solve the following 
equations (7) 
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The solution of equation (3) with (8) is 
expressed in terms of the Henkel function of 
the 1st and 2nd kind n-the order: 
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Where nnnnnnn LDCBBAA ,,,,,, ′′  , nM , nК и 

nK ′ - The expansion coefficients, which are 

determined by the appropriate boundary 

conditions; )()1( rH jn α and )()2( rH jn α - 

Respectively the Henkel function of the 1st 
and 2nd kind n-the order 
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Solution (9) at j = 1 satisfies at infinity r → ∞ 
the Summerfield radiation condition (6) and 
is represented as: 
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 Solving the problem (2) satisfies the 
constraint condition at power factors [1], and 
it follows that 0=′nK  
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Full potential can be determined by applying 
a potential incident and reflected waves. 
Thus, the bias potential will be  
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It follows that the stresses and displacements 
can be easily expressed in terms of bias 
potential [2], 
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Displacement and stress for the case of the 
layer on the compression wave ψ obtained. 
After substituting (10) into (11) with (9), we 

obtain the following expression for the 
displacements and stresses: 
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Henkel asymptotic formula used 1st and 2nd 
kind [14]. In this paper, displacement and 
stress is reduced in dimensionless forms 
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The results of calculations and conclusions 

Data falling oxen stresses and displacements 
are defined in rows, being described by the 
expressions (9) - (12) in the case of hard 
contact. Calculations were performed by 
Nene computer program complex «Mat lab», 
series calculated with an accuracy up to 10-8. 
All expressions for the stresses and 
displacements are of the form: 

( ) ( ) ( )γ−−− +=+ wtiiwt eReiR 2/122 ImIm  

As you can see the solution of the problem is 
expressed in terms of special functions of 
Bessel and Henkel functions of the 1st and 
2nd kind. With the increasing number of their 

argument (9) - (11) converges. Therefore, on 
the basis of numerical experiments showed 
that the accuracy of 5-6 members of the 
ranks of the accuracy achieved 10-6 – 10-8. As 
relaxation kernel take a three-parameter 
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 Rizhanitsena-

Koltunova [3], has a weak singularity, where 
βα ,,A - materials parameters [3]. We use 

the following parameters: 
1,0;05,0;048,0 === αβA ;
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Maximum voltage in a layer of liquid on the 
action of longitudinal and transverse 
harmonic waves is the radial stress. They 
change along with the θ -vedena in Table 1 
and 2 (with or without a liquid medium). 

 

Table 1. Radial stress in the layer at impact with the impact of longitudinal waves 

θ  00  045  090  0135  0180  

rrσ  

Empty layer 

0,672 0,423 0,711 0,518 1,65 

rrσ  

layer liquor 

0,778 0,435 0,721 0,547 1,886 

 

 

 

 

Table 2. Radial stress in a layer of liquid at the impact of transverse waves 

angle: θ  00  045  090  0135  0180  

rrσ  

Empty layer 

0,431 0,712 0,521 0,801 0,847 

rrσ  

layer liquor 

0,483 0,914 0,637 0,825 0,886 

 

In the long-wavelength ( 1>
λ
D ) stress 

distribution layer and the liquid without 
liquid differs to 14%, and in the short-wave (  

1〈
λ
D  ) in some frequency values they differ 

up to 40%. Accounting for the viscous 
properties of the material at ambient based 
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on longitudinal and transverse effects of 
harmonic waves and reduces the stresses 
and displacements at 10-16%. The maximum 
radial stress when exposed to longitudinal 
waves is achieved θ = 900 and 2700; It should 
be noted that the maximum radial stress at 
the impact of the transverse waves is 
achieved θ = 450and 1350; as well as the 
distribution of stress at β1R1= 0,099 almost 
the same as in the static case (λ→ ∞) while at 
higher wave ( 5,111 =Rβ ) numbers of the 
stress distribution is significantly different 
from the static. The ratio of the densities 
η=r1/r2 has a great influence on the voltage 
and the bias layer. With the increasing 
density of the layer maximum voltage and 
bias layer increases. Thus, methods and 
algorithms for solving tasks, allow us to find 
the stress-strain state of cylindrical bodies 
under the influence of harmonic waves.  
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